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Summary 

Nested blocking structure of a design allows controlling several sources of local variation in 
an experiment. This fact we use in a designing and an analysing three factor experiments with 
some nested and crossed structure of units. The designs considered can be incomplete with respect 
to one, two or all the factors which levels are arranged in nested incomplete block designs, in 
particular in resolvable ones. Then resulting designs are called Nested Split-Plot × Split-Block 
(say NSPSB) designs. Performed randomization processes according to a stratification of the 
experimental units lead to eight strata in the analysis. One of them, called zero stratum, is con-
nected with an estimation of an experimental mean only. In other strata analyses can be done. In 
the paper we present situations when comparisons among main effects and interaction effects of 
the factors are estimable in the different strata. The considerations are illustrated with examples of 
the construction of efficient equireplicate and nonequireplicate NSPSB designs. 

Key words and phrases: general balance, multistratum experiments, nested designs, resolvable 
incomplete block designs, split- plot × split- block designs, stratum efficiency factors 

Classification AMS 1993: 62K10, 62K15 

1. Introduction 

In practice, particularly in agricultural field experiments situations appear 
often in which experimental blocks are grouped into some sets called “super-
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blocks”. Such nested blocking structure allows controlling several sources of 
local variation. In the paper we consider similar case with reference to a three-
factor experiment set up in a split-plot × split-block (say SPSB) design (e.g. 
LeClerg et al., 1962). 

In the ordinary SPSB design a randomization processes according to a 
stratification of the experimental units leads to seven strata: zero stratum (0), 
the inter-block stratum (1), the inter-row (within the block) stratum (2), the 
inter-column I (within the block) stratum (3), the inter-column II stratum (4) 
(within the column I), the inter-whole plot (within the block) stratum (5), and 
the inter-subplot (within the whole plot) stratum (6), (cf. AmbroŜy and Mejza I., 
2003, 2004a, 2004b). The number of the strata will increase when we take into 
account the nested structure of the blocks. Then we have additional stratum 
more called the inter-superblock stratum and other strata apart (0), mentioned 
above, follow it. Then the resulting design called the nested split-plot × split-
block (say, NSPSB) design is said to be incomplete with respect to the blocks 
but complete with respect to the superblocks. Incompleteness can be related to 
one factor only, two factors only or all the factors. 

The aim of the paper is to present a randomization model, statistical pro- 
perties and their consequences for an analysis of some three factor experiments 
set up in a NSPSB designs. A concept of resolvability in nested block designs 
described by Caliński and Kageyama (2000a, 2000b) has been adopted for the 
designs considered. 

2. Material structure 

Let us consider a three-factor experiment of NSPSB type in which the first 
factor, say A, has s levels A1, A2, …, As, the second factor, say B, has t levels B1, 
B2, …, Bt and the third factor, say C, has w levels C1, C2, …, Cw. Thus the num-
ber v (= stw) denotes the number of all treatment combinations in the experi-
ment. To control several sources of local variation experimental material is 
assumed to be divided into R superblocks consisting of b blocks, each block has 
a row–column structure with k1 (≤ s)  rows (horizontal strips) and k2 (≤ t) col-
umns (vertical strips I) of the first order, shortly, columns I. So there are k1k2 
intersection plots of the first order within each block, below called whole plots. 
Then each column I is split into k3 (≤ w) columns (vertical strips II) of the se- 
cond order, shortly, columns II. So there are k1k2k3 intersection plots of the  
second order within each block, below called small plots. Here the rows corre-
spond to the levels of the factor A, termed also as row treatments, the columns I 
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correspond to the levels of the factor B, called also column I treatments, and the 
columns II are to accommodate the levels of the factor C termed as column II 
treatments. The arrangement of the factors in the NSPSB design is very impor-
tant from the statistical point of view. It has an affect on a precision of estima-
tion of treatment combination comparisons. 

3. Linear model and its analysis 

Considered here randomization model of observations has a form and sta-
tistical properties strictly connected with performed randomization processes in 
the experiment. It is based on an extension of that developed by AmbroŜy and 
Mejza (2003, 2004a) for the SPSB design. Used here a randomization scheme 
consists of five randomization steps performed independently, i.e. by randomly 
permuting the superblocks within a total area, by randomly permuting blocks 
within the superblocks, then the rows within the blocks, the columns I within 
the blocks and the columns II within the columns I in blocks. Further, assuming 
the usual unit-treatment additivity and uncorrelation of the technical errors, with 

zero expectation and a constant variance2
eσ , the model of observations can be 

written as 

 eDτ∆y +∑+=
=

7

1f
f fη
'' ,  (3.1) 

where y is an n × 1 vector of lexicographically ordered observations, 

321 kkRbkn = , ∆'  (n × v) is a known design matrix for v treatment combina-

tions, '
fD  (f =1,2,...,7) are design matrices for the superblocks, the blocks 

(within the superblocks), the rows (within the blocks), the columns I (within the 
blocks), the column II (within the columns I), the whole plots (within the 
blocks) and the subplots (within the whole plots) respectively, τ  (v × 1) is the 
vector of fixed treatment combination effects, fη  (f = 1,2,...,7) are random 

effect vectors of the superblocks, the blocks, the rows, the columns I, the col-
umns II, the whole plots, the subplots and the technical errors, respectively. 

Then under accepted assumptions we can write the first two moments of 
distributions of the random variables fη  (f = 1, 2,...,7), i.e. E 0η =)( f  and 
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ff Vη =)(Cov , 0ηη =′ ),(Cov ff  for all  f ≠ f’. Thus the considered dis-

persion structure of the linear model has the form 

 n
f

fff IDVDy 2
e

7

1

')Cov( σ+∑=
=

.  (3.2) 

It is easy to show that the dispersion matrix (3.2) can be written as 

( ) ,γCov
7

0
∑=
=f

ff Py  where {Pf }, f = 0, 1, …, 7, are a set of pairwise or-

thogonal matrices summing up to the identity matrix.  
The range space }{ fPℜ of fP  is termed the f-th stratum with fP  being 

orthogonal projection into this stratum. It follows that the considered design has 
an orthogonal block structure (cf. Nelder, 1965). So, the model can be analysed 
using the methods developed for multistratum experiments. In this case, we 
have 7 main strata, mentioned above in the Introduction, in which stratum 
analyses may be performed, at least in some cases. The statistical analysis of 
submodels related to the different strata are based on algebraic properties of 
stratum information matrices for treatment combinations, which are defined as 

 ∆∆PA ′= ff , f = 1, 2,…, 7.  (3.3) 

The presented NSPSB designs will be characterized according to their effi-
ciency of an estimation of treatment combination comparisons (called also or-
thogonal contrasts) in strata with respect to general balance property (cf. 
Houtman and Speed, 1983). Stratum efficiency factors (noted by εfi ) for a set of 
orthogonal contrasts (noted by ic′ ττττ ) are eigenvalues of the information matrices 

fA , f = 1, 2,…, 7 with respect to δr , where r is the vector of replications of 

the treatment combinations and )(diag 21
δ

vr...,,r,r=r . The contrasts are con-

nected with comparisons among main effects of the considered factors and in-
teraction effects between them. Estimability of the contrasts ic′ ττττ can be checked 

by the condition 

 ifihf prpA δε= ,  (3.4) 
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for f = 1, 2, ..., 7;  i = 1, 2, ..., v-1, where pi are orthogonal eigenvectors of the 

matrices fA , corresponding to fiε   ( 10 ≤≤ fiε ) and  ii prc δ= . 

4. Construction methods of nested split-plot ×××× split-block designs 

Statistical properties of (as well complete as incomplete) NSPSB designs 
follow mainly from crossed and nested treatment structures in an experiment 
and also from constructing methods, especially in incomplete cases (e.g. Am-
broŜy and Mejza I., 2004b). Treatment structures of the factors impose a num-
ber and a structure of units (plots) in the experiment (see Chapter 2). It can be 
noticed that inside each block in superblocks of NSPSB designs there are five 
plot sizes (the row, the column I, the column II, the whole plot and the subplot), 
so there are five levels of a precision with which the effects of the various fac-
tors are estimated. The precision is strictly connected with efficiency of the 
estimation of the contrasts (comparisons) of the treatment combinations. It is 
well known that the efficiency is the highest in a complete (in particular or-
thogonal, if it exists) design. 

Next, statistical properties of subdesigns for the factors generate statistical 
properties of the resulting design. So, information split into strata about diffe- 
rent contrasts is strictly connected with constructing methods of the NSPSB 
designs. 

In the paper we consider situation when at least one of the subdesigns is a 
nested incomplete block design, in particular a resolvable incomplete block 
design. 

Let NA ( AAbRs× ), NB ( BBbRt × ) and NC ( CCbRw× ) be incidence matri-

ces of resolvable designs for the row treatments, the column I treatments and the 
column II treatments with respect to blocks, respectively. They are as follows 

[ ]
ARAAAA NNNN MKMM 21= , [ ]

BRBBBB NNNN MKMM 21= , 

 [ ]
CRCNNNN MKMM 21 CCC = ,  (4.1) 

where RA  (≥ 1), RB (≥ 1) and RC (≥ 1) are numbers of  superblocks each of bA, 
bB and bC blocks with block sizes 

Abk 1k 11 = , 
Bbk 1k 22 =  and 

Cbk 1k 33 = , 

in the subdesigns respectively.  
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The NSPSB design for v = stw treatment combinations in Rb blocks 
grouped in R superblocks is described by the following incidence matrices: v×R 
incidence matrix  11 DN ′= ∆∆∆∆  (with respect to the superblocks), v × Rb inci-

dence matrix 22 DN ′= ∆∆∆∆  (with respect to the blocks), v × Rbk1  incidence ma-

trix 33 DN ′= ∆∆∆∆  (with respect to the rows), v×Rbk2 incidence matrix 

44 DN ′= ∆∆∆∆  (with respect to the columns I), v×Rbk2k3 incidence matrix 

55 DN ′= ∆∆∆∆  (with respect to the columns II), v×Rbk1k2  incidence matrix 

66 DN ′= ∆∆∆∆  (with respect to the whole plots).  

The matrix N1 can be written as ][ 2111 RrrrDN MLMM=′= ∆∆∆∆ , where r h de-
notes the vector of treatment combinations in the h-th superblock. In a desig- 
ning an experiment the most important role plays the incidence matrix   

 ][ 2222122 RNNNDN MLMM=′= ∆∆∆∆ ,  (4.2) 

where N2h is an incidence matrix with respect to blocks inside the h-th  
(h = 1, 2,…, R) superblock. It can be noted that 

],...,,[ 2121 ′=== vRbR rrrr1N1N ,     Rv kkbk 1m1N 3211 ==′ ,       

 

Rbv kkk 1k1N 3212 ==′ , 

where m is the vector of superblock sizes, and k is the vector of block sizes in 
the NSPSB design. Other incidence matrices besides matrix N1 follow matrix 
N2 but their general forms are not unique. However, corresponding to them 
concurrence matrices, iiNN ′ ,   i = 3, 4, 5, 6, are unique (see (4.4)). 

1) In some situations of a designing experiments Khatri-Rao product (called 
also semi-Kronecker product) of submatrices can be used. Khatri and Rao 
(1968) considered a modification of the ordinary Kronecker product (see also 
Rao and Mitra, 1971; Gupta and Mukerjee, 1989). Let NA, NB and NC be inci-
dence submatrices defined in (4.1). Then according to the incidence matrix 
(4.1) Khatri-Rao product of these submatrices has a form: 

=2N AN � BN � CN  =  

[ ]CRBRARCBACBA NNNNNNNNN ⊗⊗⊗⊗⊗⊗ MKMM 222111  . 
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Using it in a construction method of the NSPSB design we decrease the 
number of units R times in the experiment. However, in general it is difficult to 
obtain and describe statistical properties of a resulting design, only under some 
assumptions. The method was considered for only some cases of designs for 
instance, by Mejza et al. (2001), AmbroŜy and Mejza I. (2004b), Ozawa et al. 
(2004) and Kuriki et al. (2005). 

2) Next method of a designing three-factor experiment is based on the ordinary 
Kronecker product of submatrices. Then the incidence matrix (4.2) is as follows 

 =2N AN ⊗ BN ⊗ CN ,  (4.3) 

where NA, NB and NC are given in (4.1). From it, concurrence matrices are of 
forms:  

∑ ′=′
=

R

f
ff

1
11 rrNN ,      ,''''

22 CCBBAA NNNNNNNN ⊗⊗=   

,'''
33 CCBBA NNNNNN ⊗⊗= δr   ,'''

44 CCBAA NNrNNNN ⊗⊗= δ   (4.4) 

,''
55

δδ
CBAA rr ⊗⊗= NNNN    ''

66 CCBA NNrrNN ⊗⊗= δδ ,  

where   )...,,,(diag 21
A

s
AA

A rrr=δr ,  )...,,,(diag 21
B

t
BB

B rrr=δr ,   

)...,,,(diag 21
C
w

CC
C rrr=δr . 

 
Then an NSPSB design has R (= CBA RRR ) superblocks, each composed  

of b (= CBA bbb ) blocks of equal sizes k (= 321 kkk ). It is assumed that  

numbers of replications of the treatment combinations may be different, 

CBA rrrr ⊗⊗= . 
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5. Results 

Let  CA , CB and CC be information matrices for treatments in the sub-
designs. They are: 

'
AAAA k NNrC 1

1
−−= δ  with nonzero eigenvalues 121 ,...,, −sµµµ  with re-

spect to δ
Ar ,  

'
BBBB k NNrC 1

2
−−= δ  with nonzero eigenvalues 121 ,...,, −tξξξ   with respect 

to δ
Br , 

'
CCCC k NNrC 1

3
−−= δ  with nonzero eigenvalues 121 ,...,, −wψψψ  with re-

spect to δ
Cr .  

Following algebraic properties of the stratum information matrices for the 
NSPSB design, A f, f = 1,2,…, 7 and the information matrices for subdesigns, 
CA , CB and CC  one can notice that 
– in the inter-superblock stratum (f = 1) some contrasts are estimable in the 

cases only in which an incidence matrix for superblocks, N1, is not orthogo-

nal, i.e. 
n
mrN ′≠1 . Note that it can be some contrasts among the row 

treatment effects, among the column I treatment effects and among the in-
teraction effects of the row and the column treatment combinations only or 
some of them.  
Efficiency factors corresponding to them are equal, respectively,  
ε1i = 1 – µh,   ε1i  = 1 – ξm and ε1i  = (1 – µh)(1 – ξm). When the NSPSB design 

is connected and 
n
mrN ′=1  then no information about these contrasts is wi-

thin this stratum. 
– in the inter-block stratum (f = 2) some contrasts are estimable in the cases 

only in which an incidence matrix for the blocks, N2, is not orthogonal, i.e. 

n
krN ′≠2 . Then all (v –1) contrasts can be estimable in this stratum or 

some of them. It depends on subdesigns with incidence matrices NA, NB and 
NC, which generate the NSPSB design. Generally, efficiency factors corre-
sponding to these contrasts are equal to  
ε2i = 1 – ψg      (for the column II treatments),  
ε2i  = (1 – µh)(1 – ψg)  (for interaction contrasts of type A × C ),  
ε2i = (1 – ξm)(1 – ψg)   (for interaction contrasts of type B × C ) 
ε2i = (1 – µh)(1 – ξm)( 1-ψg) (for A × B × C contrasts).  
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If 
n
krN ′=2  then no information about these contrasts is within this stratum. 

 
– If an incidence matrix for the row treatments, NA is for a connected and 

orthogonal subdesign, i.e. 
A

A

nA
1kr

N
′

= , then all (s – 1) contrasts are esti-

mated in the row-stratum  (f = 3) only with full efficiency equal to one. In 

other cases, i.e. if 
A

A
nA

1krN
′≠  then stratum efficiency factor is ε3i = µh. 

Additionally in this stratum we may expect estimability of interaction con-
trasts of types  A × B, A × C and A × B × C. Efficiency factors correspond-
ing to them can be express by ε3i = µh(1 – ξm),   ε3i = µh(1 – ψg)   and    
ε3i  = µh(1 – ξm)( 1-ψg),  respectively. 

– If an incidence matrix for the column I treatments, NB is for a connected and 

orthogonal subdesign, i.e. 
B

B
nB

2kr
N

′= , then all (t – 1) contrasts are esti-

mated in the column I-stratum  (f = 4) only with full efficiency equal to one. 

In other cases, i.e. if 
B

B
nB

2krN
′≠  then stratum efficiency factor is ε4h = ξm. 

Additionally, in this stratum we may expect estimability of interaction  
contrasts of types A × B, B × C and A × B × C. Efficiency factors  
corresponding to them can be express by ε4i = (1 – µh)ξm,    ε4i  = ξm(1 – ψg)    
and ε4i  = (1-µh)ξm(1-ψg),  respectively. 

– If an incidence matrix for column II treatments, NC is for a connected and 

orthogonal subdesign, i.e. 
C

C

nC
3kr

N
′

= , then all w – 1 contrasts are esti-

mated in the column II-stratum (f = 5) only with full efficiency equal to 

one. In other case, i.e. if 
C

C
nC

3krN
′≠  then stratum efficiency factor is ε5i = 

ψg. Additionally, in this stratum we may expect estimability of interaction 
contrasts of types A × C, B × C and A × B × C. Efficiency factors  
corresponding to them can be express by ε5i = (1 – µh)ψg,   ε5h = ψg  and    
ε5i  = (1 – µh)ψg,  respectively. 

– If incidence matrices for the row treatments, NA, and for the column I 
treatments, NB simultaneously are for orthogonal subdesigns, i.e. their forms 
can be expressed as below, then all (s – 1)(t – 1) interaction A × B type con-
trasts are estimated in the whole plot-stratum (f = 6) only with full effi-
ciency equal to one. In other cases the stratum efficiency factor can be cal-
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culated from ε6h = µhξm. Additionally, in this stratum we may expect es-
timability of interaction contrasts of type A × B × C. Efficiency factors for 
them are ε6h = µhξm(1-ψg). 

– An analysis within the sub-plot-stratum (f = 7) is connected with estimation 
of (s – 1)(w – 1) interaction contrasts of type A × C and (s – 1)(t – 1)(w – 1) 
contrasts of type A × B × C only. It results from crossed and nested treat-
ment structures of NSPSB designs. However, their efficiencies with respect 
to these contrasts are strictly connected with subdesigns for the row, col-
umn I and column II treatments. Generally, stratum efficiency factors for 
these contrasts are equal respectively to ε7h = µhψg and ε7h = µhξmψg. In par-
ticular, when incidence matrices NA and NC are for orthogonal subdesigns, 
regardless of the incidence matrix NB, the stratum efficiency factors for  
A × C, and A × B × C type contrasts are equal to one.  

6. Examples 

To illustrate the theory presented in the paper, consider some 2 × 5 × 2 fac-
torial experiment. Assume that the row treatments correspond to two levels of 
nitrogen fertilization (s = 2), the column I treatments correspond to five varie-
ties of wheat (t = 5) and the column II treatments correspond to an application 
(or not) of a chemical preparat – growth regulator (w = 2). According to a mate-
rial structure of the experiment a resolvable block design for the column I 
treatments can be used. It will generate an NSPSB design. We will present two 
examples.  

 
Example 6.1. Consider at first some equireplicate generating design. Following 
the paper by Caliński and Kageyama (2000b) dual design to a singular group 

divisible design S51 (see Clatworthy, 1973) with incidence matrix N
~

 can be 

adopted. It is known that dual with incidence matrix '~
N  is a resolvable block 

design. 
Consider the NSPSB design described by the incidence matrix (4.3) with  

AN  = CN  = 12   and   ]:[)
~

( 21
'

BBB NNNN == , 

where 



CONSTRUCTION  OF  NESTED  INCOMPLETE SPLIT-PLOT × SPLIT-BLOCK DESIGNS 39 

                  Superblock 1         Superblock 2 























=

10111

11011

11101

11110

01111

1BN ’ 























=

01111

10111

11011

11101

11110

2BN . 

 
Note that the subdesign for the factor B is a resolvable BIB design with pa-

rameters 

t = 5, 2=BR , 5=Bb , 42 =k , 8=Br , λ = 6,  
 

9375.016/154321 ===== ξξξξ . 

Note also that it generates the resulting design for the considered three-
factor experiment. Hence the NSPSB design has two superblocks (R = 2), each 
composed of five blocks (b = 5) of equal sizes, k (= 321 kkk ) = 16. Number of 
the treatment combinations v = stw = 20 (> k), each equireplicated, so the vector 

of replications is '
2081r = . An incidence matrix for the superblocks has the 

form 
′








=

44444

44444
1N , so it is of an orthogonal design. 

If { A1, A2 | Bk, Bl,  Bm, Bn | C1, C2}, k < l < m < n ; k, l, m, n  = 1,2,3,4,5 de-
notes the block in which the row treatments A1, A2 are allocated to the rows, the 
column treatments Bk, Bl, Bm, Bn are allocated to the columns I and the subplot 
treatments C1, C2 are allocated to the columns II, then the layout (before ran-
domization) of the 2 × 5 × 2 factorial experiment arranged in the nested SPBB 
design will be as follows: 

 
     Superblock 1                                       Superblock 2 

 
{ A1, A2 | B1, B3, B4, B5  | C1, C2},   { A1, A2 | B2, B3, B4, B5  | C1, C2}, 
{ A1, A2 | B1, B2, B4, B5  | C1, C2},   { A1, A2 | B1, B3, B4, B5  | C1, C2}, 
{ A1, A2 | B1, B2, B3, B5  | C1, C2},  { A1, A2 | B1, B2, B4, B5  | C1, C2}, 
{ A1, A2 | B1, B2, B3, B4  | C1, C2},  { A1, A2 | B1, B2, B3, B5  | C1, C2}, 
{ A1, A2 | B2, B3, B4, B5  | C1, C2},    { A1, A2 | B1, B2, B3, B4  | C1, C2}. 
The information matrices are of the forms: 
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0=1A ,                                                    255
1

528
1

2 )( JJIJA ⊗−⊗= , 

255228
1

3 )3()2( JJIJIA ⊗+⊗−= ,  25528
1

4 )315( JJIJA ⊗−⊗= , 

)2(2 22525 JIIJA −⊗⊗= ,               255228
1

6 )315()2( JJIJIA ⊗−⊗−= , 

)2(2)2( 225227 JIIJIA −⊗⊗−= , where xxx 11J ′= . 

Table 1.  Stratum efficiency factors of the NSPSB design – example 6.1 
 

Strata Types of 
contrasts 

Df 
(1) (2) (3) (4) (5) (6) (7) 

A 1   1     
B 4  0.0625  0.9375    
C 1     1   

A × B 4   0.0625   0.9375  
A × C 1       1 
B × C 4     1   

A × B × C 4       1 

 
Summing up, information connected with estimation of four contrasts 

among effects of the varieties of wheat (the factor B) is split into two strata. The 
same situation is for the interaction contrasts of type A × B (among the nitrogen 
fertilization and the varieties). However loss of information is not large (≈ 6 %) 
so the stratum analyses can be performed, for the main effects of the factor B in 
the column I-stratum and for the interaction A × B in the whole-plot-stratum (as 
in a complete design). Other contrasts of types A, C, A × C, B × C and A × B × 
C are estimated as in a complete design (with full efficiency).  

Example 6.2. As generating design for the column I treatments a supplemented 
block design now will be used. Its incidence matrix has the form 

][ 3B2B1BB NNNN MM= , where  























=

00

00

11

11

11

1BN              























=

00

11

00

11

11

2BN                























=

11

00

00

11

11

3BN . 
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Note that the subdesign for factor B can be treated as a nested block design 
with parameters  

t = 5, =BR 3, =Bb 2, =2k 3, ]2,2,2,6,6[ ′=Br , 6703221 ,/ ==ξ=ξ , 

143 =ξ=ξ . Hence, the resulting NSPSB design has two superblocks (R = 3), 

each composed of five blocks (b = 2) of equal sizes, k (= 321 kkk ) = 12. Number 

of the treatment combinations v = stw = 20 (> k). They are nonequireplicated, so 

the vector of replications is '
2

'
2 ]2,2,2,6,6[ 11r ⊗′⊗= . An incidence matrix 

for the superblocks has now a form 

















=
11122

11122

11122

1N , so it is not of an 

orthogonal design. 
We may expect that some contrasts will be estimated in the inter-

superblock stratum. The incidence matrix with respect to the blocks is 

2B22 1N1N ⊗⊗= . 

Then the layout (before randomization) of the 2 × 5 × 2 factorial experi-
ment arranged in the resolvable SPBB design will be as follows: 
   
Superblock 1    Superblock 2   Superblock 3 
{ A1, A2 | B1, B2, B3 | C1, C2},   { A1, A2 | B1, B2, B4  | C1, C2},     {A1, A2 | B1, B2, B5  | C1, C2} 
{ A1, A2 | B1, B2, B3 | C1, C2},   { A1, A2 | B1, B2, B4  | C1, C2},     {A1, A2 | B1, B2, B5  | C1, C2} 
 
Information matrices are of the form: 

2
33

J
JI0

00
J ⊗









−
⊗=

×

××
)18/1()18/3(23

3222
21A ,       0=2A , 

2
323

322
223 )6/1()6/1(

)6/1()2/1(
)2( J

IJ

JI
JI ⊗








⊗−=

×

×
A ,   

2
323

3222
24 )3/1()6/1(

)6/1()2/1()2/3(
J

IJ

JJI
J ⊗









−
−−

⊗=
×

×
A , 



IWONA MEJZA, KATARZYNA AMBROśY 42 

)2(
)2/1(

)2/3(
22

323

322
25 JI

I0

0I
J −⊗








⊗=

×

×
A , 

2
323

3222
226 )3/1()6/1(

)6/1()2/1()2/3(
)2( J

IJ

JJI
JI ⊗









−
−−

⊗−=
×

×
A , 

)2(
)2/1(

)2/3(
)2( 22

323

322
227 JI

I0

0I
JI −⊗








⊗−=

×

×A . 

Table 2. Stratum efficiency factors of the NSPSB design – example 2 
 

Strata Types of 
contrast 

Df 
(1) (2) (3) (4) (5) (6) (7) 

A 1   1     

B 
2 
2 

0.33 
 

  
0.67 

1 
   

C 1     1   

A × B 
2 
2 

  
0.33 

 
  

0.67 
1 

 

A × C 1       1 
B × C 4     1   

A × B × C 4       1 

 
From the table 2 it can be seen that the contrasts among main effects of the 

factor B are estimated with a different precision. Similarly to the example 6.1, 
information connected with two of them is split into two strata (here in (1)- the 
superblock stratum and (4) – with the column I stratum). The remaining two of 
them are estimated with full efficiency (the stratum efficiency factor is equal to 
1). The stratum analysis connected with main effects of the factor B should be 
performed in the stratum (4) only. The same situation is with the contrasts of 
the interaction effects of type A × B. Other contrasts of types A, C, A × C, B × C 
and A × B × C are estimated with full efficiency as in a complete design. 
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KONSTRUKCJA ZAGNIE śDśONYCH NIEKOMPLETNYCH UK-
ŁADÓW SPLIT-PLOT ×××× SPLIT-BLOCK 

Streszczenie 

ZagnieŜdŜona struktura blokowa układu pozwala kontrolować kilka źródeł zmienności  
w eksperymencie. Fakt ten wykorzystany został w planowaniu i analizie doświadczeń z trzema 
czynnikami z pewną zagnieŜdŜoną i krzyŜową strukturą jednostek. RozwaŜane tu układy doświad-
czalne mogą być niekompletne ze względu na poziomy jednego czynnika, dwóch lub wszystkich 
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czynników, które są wtedy aranŜowane w zagnieŜdŜonych, w szczególności rozkładalnych, nie-
kompletnych podukładach blokowych. Wygenerowane końcowe układy nazywane są zagnieŜdŜo-
nymi układami split-plot × split-block (z jęz. ang NSPSB). Przeprowadzane w nich procesy ran-
domizacyjne jednostek róŜnego rzędu doprowadzają do powstania ośmiu warstw (podprzestrzeni 
ortogonalnych), przy czym jedna z nich jest zawsze związana z estymacją średniej eksperymentu, 
a w pozostałych mogą być przeprowadzone analizy warstwowe. W pracy przedstawiono, które 
kontrasty i z jaką efektywnością są estymowane w róŜnych warstwach. RozwaŜania zostały zilu-
strowane przykładami konstrukcji układów NSPSB z jednakowymi i róŜnymi liczbami replikacji 
kombinacji obiektowych. 

Słowa kluczowe: ogólne zrównowaŜenie, doświadczenia wielowarstwowe, układy zagnieŜdŜone, 
rozkładalne układy o blokach niekompletnych, układy split- plot × split- block, warstwowe 
współczynniki efektywności 

Klasyfikacja AMS 1993: 62K10, 62K15 

 


