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Summary

In the paper, the row-column designs with some orthogonality properties are
considered. New relations and some examples are presented.
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1. Introduction

Considerations of this paper concern the linear model corresponding to
a row-column design in which v treatments are allocated on n experimental
units arranged in b, rows and b, columns. In this model, denoted by the triple

{y7 111#’ + Al7 + D’lﬂl + D,Zﬂ2140'21-n}7
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where y is an (n x 1) observable random vector with an expectation E(y) =
1.p + Ay + D13, + D}3,and a dispersion matrix D(y) = 02I,. The
symbols 1, and I, denote the (n x 1) vector of ones and the (n x n) identity
matrix, respectively, and o? is an unknown positive parameter denoting the
variance of random disturbances. Further, 4 is a (v x 1) vector of unknown
treatment effects (main parameters), the scalar p is an unknown parameter
denoting the overall mean, 3, and 3, are (b; x 1) and (b2 x 1) vectors of
unknown row effects and column effects (nuisance parameters), respectively,
and A', D} and D; are (n x v), (n x b;) and (n X b3) known binary matrices,
such that A’lu = D’11b1 = D’z:l.b2 = 111-

In addition, let N; be the treatment-row incidence matriz, N, - the
treatment-column incidence matriz, and N 15 - the row-column incidence ma-
triz. Furthermore, let » denote the vector of treatment replications, k; the
vector of row sizes, and ky the vector of column sizes. Then, R, K; and
K; are the diagonal matrices with the components of =, k; and k, on their
diagonals, respectively.

For a matrix L, let Qp, = I — L(L'L)~ L' be the orthogonal projector on
the orthocomplement of the column space of L, where (L'L)~ is a generalized
inverse of L'L.

A crucial role in the analysis of a row-column design belongs to the C-
matriz defined by

C = AQ(D’I:D’z)A, =R- NlKl_lNll+

—(N2 — N1K7'N2)(K; — N, K7 'N 1)~ (N2 — NiK7IN ).

The C-matrix of the two related block subdesigns is of the following form
Ch=AQpA' = R— N,K;'Nj,

which corresponds to block designs with the rows (b = 1) and the columns
(h = 2) as blocks. The matrix Cj is defined as

Co=R-—rr'/n.

Throughout this paper h =1, 2.
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2. Definitions

Definition 1. A row-column design is said to be connected if all treatment
contrasts are unbiasedly estimable.

It is well known that a row-column design is connected if and only if
rank(C) =v — 1.

A row-column design is said to be row-connected if and only if rank(C,) =

v — 1. A row-column design is said to be column-connected if and only if
rank(C;) = v — 1.

Let A and A; denote the matrices A = ~5CR~7 and Ap= ‘%ChR'%.

Definition 2. The canonical efficiency factor € of a row-column design and
the canonical efficiency factor ey, of the hth block design are harmonic means
of nonzero eigenvalues of the corresponding C-matrices with respect to the

matrix R, i.e. . N
_1_ tr(A7) o1 _ _tr(47)
&= rank(C) and " = rank(C})’

where tr(L) denotes the trace of L and Lt is a Moore-Penrose inverse of L.

Definition 3. A row-column design satisfies the commutativity property if
A A, = Ay A,.

Definition 4. A row-column design is said to be strictly orthogonal if the
design matrix for rows adjusted for treatments (i.e. QD)) and the de-
sign matrix for columns adjusted for treatments (i.e. Q,,D)) are mutually
orthogonal, i.e.

DlQAID’z = 0.

It can easily be proved that the above condition can be rewritten as

N’lR_lNg = N12. (21)
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For more results of orthogonality in the row-column design, see, for ex-
ample, Siatkowski (1993).

Definition 5. A row-column design is said to be treatment-row orthogonal
if the design matrix for treatments adjusted for rows (i.e. Qp1A') and the
design matrix for rows adjusted for treatments (i.e. Q/D}) are mutually
orthogonal, i.e.

AQp, QD) = 0.

It can easily be proved that the last equality can be rewritten as

N,;K{!N'R'N, = N,. (2.2)

Definition 6. A row-column design is said to be treatment-column orthogonal
if the design matrix for treatments adjusted for columns (i.e. Q pyA') and the
design matrix for columns adjusted for treatments (i.e. Q,D5) are mutually
orthogonal, i.e.

AQp,QaDy = 0.

It can easily be proved that the last condition can be rewritten as

N;K;'NY,R'N,; = N,.

Definition 7. A row-column design is said to be ordinary row-column design
if the row-column incidence matrix is of the form N, = 11’.

3. Results and examples

Theorem 1. If a connected row-column design is such that the treatment-row
subdesign is orthogonal and the treatment-column subdesign is orthogonal
then the row-column design satisfy the decomposability property, i.e.

C = C]_ + Cz —.Co. (3]_)
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Proof. Follows by Remark 3 in Goszczurna and Siatkowski (2003) and by
Corollary in Baksalary and Siatkowski (1993).

Theorem 2. A connected row-column design with the treatment-row sub-
design orthogonal property and the treatment-column subdesign orthogonal
property fulfills the commutativity property.

Proof. Follows by Theorem 4.1 in Baksalary and Shah (1990).

Example 1. Let us consider a row-column design with the plan of the form

A B C «
B C x A
C x A B
* A B C
For this row-column design
1111
N,=N;=|1111],
111

thus (2.1) holds, i.e. the treatment-row subdesign is orthogonal and (2.2)
holds, i.e. the treatment-column subdesign is orthogonal. Consequently, from
Theorem 1, the row-column design satisfy the decomposability property (3.1).
However, from Theorem 2, the row-column design fulfills the commutativity
property.

Theorem 3. If a connected ordinary row-column design is such that the
treatment-row subdesign is orthogonal and the treatment-column subdesign
is orthogonal then the row-column design is strictly orthogonal.

Proof. Follows by Theorem 2 in Goszczurna and Siatkowski (2005).
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Example 2. Let us consider a row-column design with the plan of the form

A B B C D
D A B B C
C D ABB
B CD ARB
B B CD A

For this row-column design v =4, N3 =11,

4 -2 -1 -1
-2 6 -2 -2
C= )
-1 -2 4 -1
-1 -2 -1 4

and rank(C) = 3. So, the ordinary row-column design is connected. Next,

N1=N2=

—_ = N

111
2 2 2
111
111

N

therefore, the row-column design is the treatment-row orthogonal and the
treatment-column orthogonal. In that case, from Theorem 3, the row-column
design is strictly orthogonal.

Theorem 4. If a row-column design with rank(C) = rank(C,) = rank(C,)
has the canonical efficiency factor € = 1, then the treatment-row subdesign
is orthogonal and the treatment-column subdesign is orthogonal.

Proof. Follows by Theorem 1 and Remark 2 in Goszezurna and Siatkowski
(2003).

Example 3. Let us consider a row-column design with the plan of the form
(Freemann, 1975)

* A x B x C
B x C x A
* C x A x B
A x B x C «x
C B ACB A
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For this row-column design

4 -2 -2
C=C,=Cy=| -2 4 -2,
-2 -2 4

and rank(C) = rank(C)) = rank(C;) = 2. Next,

2t
A==| - -

3| -1 2 -1,
-1 -1 2

and ¢ = 1. Therefore, from Theorem 4, the treatment-row subdesign is
orthogonal and the treatment-column subdesign is orthogonal.

Lemma 1. If a connected row-column design has the canonical efficiency fac-
tor ¢ = 1, then the treatment-row subdesign is orthogonal and the treatment-
column subdesign is orthogonal.

Lemma 2. If a connected ordinary row-column design has the canonical
efficiency factor € = 1, then the row-column design is strictly orthogonal.
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ORTOGONALNO S€ UKEADOW WIERSZOWO-KOLUMNOWYCH

Streszczenie

W pracy przedstawiono nowe relacje pomiedzy wlasnosciami silnej ortogonalnosci
a ortogonalnoéciami podukladéw blokowych dla ukladéw wierszowo-kolumnowych.

Niektére wyniki zilustrowano przykladowymi planami ukladow.
Stowa kluczowe: uklad wierszowo-kolumnowy, silna ortogonalnosé, ortogonalnosé
obiektowo-wierszowa, ortogonalnosé obiektowo-kolumnowa, spGjnosé, wspétezynnik

efektywnodci, przemiennosé
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