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Summary

Among research topics in block designs we encowstere notions and techniques linked to
graph theory. We bring a few glimpses of its usthwhe focus on designs on regular graph. We
report here on some results in this area concelffistter-type inequality.
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1. Introduction

Spectral graph theory is a profitable tool in the study of block designs. Our primary
concern here are designs on pseudo-geometric graphs. At this point, Fisher-type inequality
appears to be a subject of considerable interest. The paper is an attempt towards a brief

exposition of the major results on this topic.
The remaining sections have the following content. All necessary preliminaries are

covered by Section 2. In Section 3 a short study concerning Fisher-type inequalities is

performed. Examples are gathered in Section 4.
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2. Prerequisites

2.1. Strongly regular graphs

This section is devoted to some preliminaries on graphs. The reader is assumed to have
some familiarity with the basic items of graph terminology. For more information, we
refer to Chartrand and Lesniak (1996). Let us prepare some notation first. We shall use
the symbols J, I to denote, respectively, the all-one matrix and the identity matrix of
suitable dimensions. Throughout, all graphs under consideration will be simple, finite
and undirected. From now on, G is assumed to be a d-regular graph on v vertices, unless
stated otherwise.

We shall use G to indicate the complement of G. We let A (G) denote the adjacency
matrix of G. We call an eigenvalue of adjacency matrix A (G) restricted if it corresponds
to the eigenvector perpendicular to the all-one vector. We let p, (G) > ... > k,(G)
denote the distinct restricted eigenvalues of A (G). It is convenient to henceforth denote
o (G) = d. Accordingly, the whole spectrum of A (G) is g (G) = p1 (G) > ... > p, (G).
It is worth to note that we allow the possibility p4(G) = , (G). It is indeed the case
whenever G is disconnected. We shall proceed by exhibiting some basic properties of

strongly regular graphs (henceforth srg).

A d-regular graph G is said to be strongly regular whenever it is not complete and for
each pair of distinct vertices there are exactly a or b vertices adjacent to both, according
to they are adjacent or not, respectively. Throughout, the parameters of srg will be
denoted by (v, d,a,b). This condition can be restated in terms of an adjacency matrix A
as

A2 =(d—b)I+(a—b)A+bJ. (2.1)

In the following proposition we cite some well known results about srgs. Proof follows

from direct verification.

Proposition 1 (i) for a stg G we have d(d—a—1) =b(v—~d 1), (ii) G is a srg if

and only if the adjacency matriz A(G) has precisely two distinct restricted eigenvalues.
Note u, (G), uy (G) are readily obtained via quadratic equation (2.1)

Bt pe=a=b ppy=b—d (2.2)
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For later purposes, we establish some additional notation. Let denote by K, a complete
graph on n vertices. Given a graph G, by kG we shall mean a union of k copies of G.

The graph G = kK, is commonly known as a complete k-partite graph.

2.2. Designs on regular graph

We define D to be a class of proper, binary, equireplicate block designs (with r as the
replication number) in which v varietes are to be compared via b blocks of size k.
A design 6 € D is called a design on regular graph provided that its concurrence matrix
S := NN’ has precisely two distinct off-diagonal entries \;, Ao, hereafter called A-values.
For any such design there is afforded a d-regular graph G with the adjacency rule as
folows: there is an edge between two distinct points whenever the corresponding A-value
equals \;. G is reffered to as the underlying graph. Thus, an equivalent way to formulate
this definition is by the equality
S=(r—2A) I+ (M=) AG) + Ml (2.3)

We shall use the notation & € Dg (M1, A2) as an abbreviation for: § € D is a design on
regular graph G with the A-values A1, Ag. Further analysis is facilitated by reference to
the following property dA\; + (v~d— 1) Ay =r(k—1).

From (2.3) the latent roots of S are easily seen to be
=M =2 (G)+r—2g, i=1,...,s. (2.4)

One readily verifies that the all-one vector contributes 6y = rk to the whole spectrum of
S. Clearly there is possibility 6y = 8;. If it is the case, a design is called disconnected.
As easily seen from the foregoing, an underlying graph accumulates algebraic features of
design.

The following notions are of special interest here.

Definition 2 A design § € D (A2 + 1, X2) is called a regular graph design (for short:
rgd). A rgd is said to be partial linear space (for short: pls) if Ay = 0.

2.3. Partial geometries and partial geometric designs

We proceed to generalize the notion of partial linear spaces by partial geometries (pg)
and partial geometric designs (pgd). Much of the foundational work on pgds was due
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to Bose. Partial geometric designs attract statisticians’ attention, due to optimality in a
wide-ranging class of designs (see Bagchi and Bagchi (2001), Cheng and Bailey (1991, Th
2.2)).

We introduce the necessary terminology (Bose et al (1976, Th 2.1)).

Definition 3 A design § € D is said to be partial geometric if for suitable integerst > 1

and c the following equation is satisfied
NN'N=6N+tJ, f=r+k+c—t—1. (2.5)
Partial geometric designs with ¢ = 0 are distinguished by calling them partial geometries.

Bose et al, among others, (1963), (1976), (1979) conducted an extensive study of partial
geometric designs. The following lemma plays an essential role in this development (Bose

et al (1976, Th 3.3), van Dam and Spence (2005, Pr 2)).

Lemma 4 Apart from balanced designs, a connected block design 6 € D is a pgd if and
only if its concurrence matriz is singular with the only non-zero eigenvalue 6, other than

the simple eigenvalue rk.

Here we state some facts to use them later.

Lemma 4 implies that a pgd must be connected. Turning now to (2.5), one readily
establishes that a partial geometry forms a partial linear space (every pair of distinct
varieties is contained in at most one block).

We exhibit now some additional properties of partial geometries, consequent upon
Lemma 4.

We shall rely on the following well-known result originally stated by Bose (1963).
Lemma 5 The underlying gra.ph of pg (r,k,t) is a srg with
EQ+E=1)(-1)t"),r(k-1),k-2+(r—1)(t~1),rt). (2.6)
Proof. Combining (2.4) with Lemma 4 we arrive at
d=rk-1),py=0-r=k—t—1,pu,=—r. (2.7)

The rest follows trivially from (2.2) and Proposition 1. O

A srg is said to be pseudo-geometric if its parameters are of the form (2.6).

As a converse to Lemma 5, we have
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Proposition 6 A pls, whose underlying graph is pseudo-geometric, is a partial geometry.

Proof. The lemma follows combining (2.7) and Lemma 4. O

Two supplementary remarks are in order. (i) a pseudo-geometric graph need not
correspond to a partial geometry; if there is indeed relevant partial geometry then the
point graph is said to be geometric, (ii) the complement of pseudo-geometric graph need

not be pseudo-geometric.

3. Fisher-type inequalities
We have included here an exposition of some known facts related to Fisher’s inequality.

Proposition 7 Let the underlying graph of pls § be strongly regular. Then b < v implies
that 0 is a pg.

Proof. Clearly b < v implies singularity of S;. Finally, we use Lemma 4 to get the desired
result. OJ
The following statement is due to Bose and Shrikhande (1979, Th 3.1). It provides a

generalized version of Proposition 7.

Theorem 8 Let 6 be a design on srg and let Ay > Ag, b < v. Then ¢ is a pgd with

IC('I"—)\I)

t=d(A1_A2)T(7)T——k_)

+I€A2, C=d()\1—/\2)%+(k—1)()\2—1).
Next, we cite related result due to Ionin and Shrikhande (2002, Th 3.2).

Theorem 9 Let § € Dg (A1, A2). If (r — X2) /(A2 — A1) is not a multiple eigenvalue of
A(G), then v <b.

Finally, we will conclude with brief discussion of special topics involving partial geome-

tries. The following criterion treats the existence of pls having b < v.

Corollary 10 Let G be a srg. If 6 € Dg (1,0) satisfies b < v then k=1 —d/py > —pg,

where py s a multiple eigenvalue of A(G).
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Some simple examples are worth to be presented here. To this end, we briefly examine
the graph 3K3. From d = 6, uy = —3 we get k = 3. The necessity result of Corollary 10
establishes that associated pls (if it exists) must have at least 9 blocks. It is indeed the

case. It is commonly known as the Pappus configuration and it turns out to be pg (3, 3,2).

Take in turn the pentagon (cyclic graph of order 5). Its negative restricted eigenvalue
is irrational, what exludes immediate the case.

For the sake of completness, it is worthwhile to recognize an existence of trivial (k = 2)
partial geometries. Proposition 6 in van Dam and Spence (2005) characterizes the case.

It asserts that the underlying graph must be of the form 2K, or K,,;.

4. Designs on geometric graphs

This note will be concluded with a number of examples.

4.1. Complete Multipartite Graphs

One readily checks that a pg(r,k,k — 1) yields a complete multipartite graph kK,. A
group-divisible design can be characterized as being a design on kK, with py =0, pg = —1.
According to (2.4), the following types of singularity will occur: (i) ; = 0 (singular
design), (ii) 82 = 0 (semi-regular design).

Moreover, each partial geometry having t = k—1 turns out to be a transversal design,
L.e. it meets the following property: the point set admits a partition into equisized groups,
each having with every block precisely one point in common.

The octahedron 3K, corresponds to the pls §;. According to Proposition 7, b < v

guarantees that this design (being semi-regular) is a pg(2,3,2). For a second example
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consider d,. As easily seen from Theorem 8, d2 (being singular) exemplifies pgd.

1[[1]]|5]|5
di:|2(]4]l2]]4 b2 :
316|613

4.2. Triangular Graphs

1
3
5
6

1S, T U R
[~ S Y JCR

We pay here attention to graphs defined by the triple (2, k,2). These graphs are known
as the triangular graphs. (2.7) yields py = k — 3, py = —2. The concern here is with the
graph assigned to k = 4. It is the complement of the Petersen graph. Two examples are
provided below. As a first example consider d3 being pg (2,4,2). For a second example
consider the design whose allocation of treatments to blocks is given by d;. A brief

inspection reveals that it is a pgd.

11114]1 2113 4

1 111223
2(12)]5 3 114]|5

31414155
03 : 64:|3||6]]| 6 71167

9117 8[|6
411718 811889

10((811101]|9||7
5(19(110]]10]|19]|10

Let us allow the possibility that a design has repeated blocks. Replacing each block
of the design J, by two copies, gives rise to another partial geometric design. It can be
easily established that the resulting design has the same parameters t = 12, ¢ = 8 as the

arrangement J5 (being just a transversal design on 5Kj).

Ll [ e[ 2 ] 2] 2] 2 ][ 2][2]]2
3 33114 [4]| 43|33 4 | (4| 4
0:] 5 51|6||5|[6]||6!|5][6]|]6 5|5 6
7 8117187 8(|7]|8]]|8 711817
10|10 _Q_ii 1019 1011101910

4.3. Latin Square Type Graphs

A partial geometry with ¢t = r — 1, where 2 < r < k+1, is known as a net of order r and

deficiency k — t. Nets (also called square lattice designs) can be characterized as follows.
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Given a square array of size k containing k? distinct symbols and r — 2 mutually
orthogonal Latin squares of order k, we define a partial geometry with k? points (repre-
senting the cells of the array) and rk blocks. The blocks are partitioned into r parallel
classes (each being a partition of the set of points) of k blocks apiece. The first (the
second) parallel class corresponds to the rows (respectively the columns) of the array, the
remaining r — 2 families are formed by considering each Latin square in turn, and taking
as the blocks the sets of cells containing the same symbol. In extreme case r = 2 two
points are contained in the same block whenever the corresponding cells are in the same
row or the same column of the array.

The corresponding underlying graph is called pseudo Latin square type graph of type
L. (k). It has the eigenvalues p; = k — 7, uy = —r. The special graph L, (k) is known as
the Lattice graph. Obviously, in extreme case r = k + 1, we obtain the complete graph on
k? vertices. This case has been excluded.

Two examples dg, d7 follow, the first for pg (2,3, 1), while the latter exemplifies pgd
on Ly (3).

1|47 1112113
de¢:12|(5|1(8 411516 o7 :
3116119 711819
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O nieré6wnosci Fishera dla ukladéw na grafach

regularnych
Streszczenie

Tematem rozwazan sg uklady blokowe na regularnych grafach. W pracy dokonano
krétkiego przegladu znanych rezultatéw dotyczacych nieréwnosci Fishera w obrebie graféw
silnie regularnych, Scile zwigzanych z takimi obiektami kombinatorycznymi jak uklady
typu PBIB, geometrie czgéciowe, uklady geometrii czgsciowych. W szczegdlnosci ukazano
implikacje wspomnianej nieréwnoéci w zakresie wspélzaleznoci pomigdzy wyodrebnionymi
klasami ukladéw. W czeéci ilustracyjnej scharakteryzowano podstawowe rodziny graféw
wspéHliniowoéci dla geometrii czesciowych, koncentrujac uwage na ukladach odznaczaja-

cych si¢ wlasnoécig osobliwo$ci macierzy spotkai.

Stowa kluczowe: graf silnie regularny, nieréwnos¢ Fishera, uktad geometrii czebciowej
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