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Summary

Bootstrap confidence intervals for mean were exathifigvo most popular bootstrap meth-
ods were used in computer simulations: percentite\wsith bias-correction. The bootstrap confi-
dence intervals were compared with standard thieaténtervals in aspects of coverage of true
value, length and estimators of intervals bounduénce of sample size (from 10 to 100 ele-
ments) on considered results was examined. Noris@ibuition of observations was used in study

because it was very known theorems about constgietind correctness of analytical confidence
intervals.
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1. Introduction

In different scientific researches some statisticexamined characteristic
is used to compare new methods with classical @@®setimes only difference
between means is used to compare considered grBugls.comparison informs
only about differences between drawn samples frampulations. In a case
when experimenter wants to compare whole populaticonstruction of confi-
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dence intervals is necessary. Often confidenceviateean be calculated ana-
Iytically on the basis of theoretical equationst bumetimes theory assump-
tions about considered statistics are not correct.

Nowadays computers can be used to help a sciémtigtsearches. Efron
and Tibshirani (1991, 1993) described one of sitimtamethods calletoot-
strap, which can be used to estimate confidence intentahas been success-
fully used to estimation of different statisticsdatheir confidence intervals
since then mainly in such disciplines as mediciygmetics, ecology, agriculture
and others (Carpenter and Bithell, 2000; Scheindr@urevitch, 1993; Ro and
Rannala, 2007; Wolfsegger and Jaki, 2006; Bochraaki Wesotowska-
Janczarek, 2005, 2006). The most important advantéghis method is that it
does not require the assumption about distributimmality of studied feature,
but in some cases it leads to incorrect conclusigfi®n and Tibshirani, 1993;
Manichaikul at al., 2006; Schenker 1985; Young 1994

The aim of this paper is to examine influence @lvwdr sample size on cor-
rectness of bootstrap confidence intervals andnesion of length, lower and
upper bounds of interval. It include short desdiptof two mostly used types
of bootstrap confidence intervals. The results ioeth in simulations by boot-
strap methods are later compared with known theatatesults. Due to ability
of easy comparison mean value is used in simulgtion

2. Construction of bootstrap confidence intervals

Two types of bootstrap confidence intervals weran@red: percentile and
with bias correction (Efron and Tibshirani, 199B93). They were used to
construct confidence intervals for mean in aim @éonpare results obtained in
simulations with known theoretical ones. In someesathe other bootstraps
methods are used: bootstrap-t, bootstrap with tdasection and acceleration,
non-studentized pivotal, test-inversion, studetitast-inversion.

The percentile bootstrap method is the simplestrangt commonly used
method to construct bootstrap confidence intervalse bootstrap technique
estimates the precision of a statistic by approkimgathe unknown sampling
distribution in two-step procedure. First, the uokmn sampling distribution of
values in the population is approximated by a e@igcdistribution. Then, many
bootstrap samples are drawn from this distributibhe unknown sampling
distribution is approximated by the distribution edtimates from many boot-
strap samples.
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In a case when a statistic is applied for two pafohs there must be two
parallel and separate processes of sampling, anéhéofirst population and
another one for the second population. Bootstrapptes are drawn from the
first and the second discrete distribution respebtito calculate a single esti-
mator for difference between mean values of stusiiatistics.

There must be at least 1000 bootstrap samplegabtecconfidence interval.
Suitable percentiles must be calculated to obtainfidence intervals on re-
quired significance level af in percentile bootstrap method. For examplé&'2.5
and 97.8 percentiles of a bootstrap distribution are usedhe bounds of a
0.95 confidence interval. To calculate these pdilesn estimators from 1000
bootstrap replications must be sorted in order ftbensmallest to the largest.
The 2.8' percentile is the average of the"2ind 26 largest values and simi-
larly the 97.8 percentile is the average of §7and 978 values.

Following symbols are used:

6 — estimated parameter,

é — estimator of parameter,
6,,— value of estimator for base sample,

A

@ — estimator obtained by bootstrap method,

gla) _ percentile of ranka for distribution of estimator values for boot-
strap resample.

In general case in bootstrap methods confideneeval has a form of
6..6,)=(",6) 2.1)

where:
6, — estimator of lower bound of interval,

A

6, — estimator of upper bound of interval,
a, ,a, —ranks for lower and upper percentiles.

In percentile method bounds of estimated confidentervals at required
confidence level kxis defined by percentiles of rank:

a =< (2.2)
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Percentile method assumes that medifaf distribution of estimator val-
ues for all bootstrap samples is equal to valjeof estimator for original sam-

ple. This case is presented on Fig. 1a. where mwahows median of boot-
strap sample distribution and parameter value éselsample as well.
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Fig. 1. An example of estimator values distribution footsirap samples in which medilh
and parameter valug, for original sample are equal (left) and differ@mght)

The situation described above does not always péd@e. Sometimes in-
fluence of a few disturbing values or distributiohparameter can cause that
estimators of parameter for bootstrap samplesraoe leiased. Such situation is
presented on Fig. 1b where median of distributibbomtstrap samples parame-
ter is less from parameter value for base sampis Gauses that generated
percentile confidence interval is moved to lessigal

Bootstrap method with bias correction (Efron anoishirani 1993) permits to
improve precision of percentile method in such saskis method adds two steps
after estimation of distribution of considered paeser for bootstrap samples:

— calculating the fraction of bootstrap samples fdrioh parameter value is
less than parameter calculated for original sample,
— calculating new interval bounds to comply bias eotion.

Let F be fraction of parameter estimators for bootstamples which are

less than value of parameter for original sampleeril’

2,=®7(F), (2.3)



INFLUENCE OF SAMPLE SIZE ON ESTIMATION... 71

where®™ signifies the inverse cumulative normal distribatiN(0,1). Percen-
tiles estimating confidence interval with bias eation have the following
ranks:

a, = (D(Zzo + z(%)) (2.4)

a, = d>(220 + z(l'%)),

where:
2@). percentile of rankr for standard normal distribution.

3. Computer simulations

Computer simulations were carried out to estimateectness of bootstrap
confidence intervals. The observations were rangaimiwn from population
with standard normal distributioN(0,1). Intervals of significance levak0.05
were constructed for samples of size 10, 20, 3058070 and 100. One thou-
sand bootstrap samples were drawn from originalptarfor construction of
single confidence interval (percentile and withsb@orrection as well) as de-
scribed in the previous section.

Confidence intervals constructed for mean by boapstmethods were
compared with standard theoretical intervals coestid for samples from nor-
mal distribution with unknown megmand unknown standard deviationIn a
case of sample size and confidence levad confidence interval for mean is
well known and given by:

X—t(l—%a,n—l)iql < X+t(1—%0(,n—1)i

Un Jn

(3.1)

_ 1
X = —Z X, - mean of the sample,
n

i=1

s= \/LZ(XI - 2)2 - standard deviation of the sample,
n —_—

[EEN



72 ANDRZEJ BOCHNIAK

t(a',l/) — fractile of ranka of Student’st distribution withv degrees of
freedom.
The following problems were considered for condgddntervals:

— percentage coverage of mean real value equal Oaamittparison of stan-
dard analytical intervals coverage; confidencerirtls were constructed
for 10000 drawn samples of sizes mentioned above,

— comparison of average length for different intesyal

— relative difference of length for pairs of consel@iconfidence intervals,

— distribution of length difference for constructedervals for the same sam-
ple in relationship with analytical values,

— calculating estimators of intervals bounds in deleeice of mean and stan-
dard deviation of drawn samples,

— determining tendency of relation between boundsraedn as well as stan-
dard deviation.

Simulations were made in Microsoft Excel 2003 Paffssional associated
with usage of Visual Basic for Applications in Ekdéer programming neces-
sary functions to random drawing of humbers, camsimg intervals and saving
collected results which were graphically work atet.

4. Results of computer simulations

The bootstrap confidence intervals are not peristone can see (Fig. 2)
coverage of mean true value, which is O for stashatenrmal distribution from
which observations were drawn, does not have reduevel. Percentage cov-
erage of intervals should oscillate about 95% fonficlence levela=0.05.
Standard theoretical intervals (eq. 3.1) satisfg tequirement, but bootstrap
intervals have always less coverage although ive@es to 95% as A oo.

It seems that sample size of 30 elements mustdx atsleast to calculate quite
correct bootstrap intervals (with coverage apr@52%).
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Fig. 2. Percentage coverage of true value by confiderteevials
Table 1 Coverage error for bootstrap confidence intervals

Sample size Percentile Bias-corrected 11100%

10 4.86% 4.89% 10.00%

20 2.63% 2.56% 5.00%

30 1.48% 1.51% 3.33%

40 1.10% 1.07% 2.50%

50 1.14% 1.11% 2.00%

70 0.90% 0.87% 1.43%

100 0.34% 0.34% 1.00%

This fact is consistent with theorems that coverager for two-sided con-
fidence intervals is of ordeO(%) [10®% or sometimes even smaller — under

assumption tha(é— 0)/& is smooth function of sample moments with asymp-
totic normal distribution (Hall, 1992). The exacilwes of coverage error ob-
tained in simulations with comparison to theordtiiaiting function < [100%

are shown in Table 1.

In the aim to find the reason of that fact follogianalyses were made in
which length of constructed intervals was examirigabtstrap confidence in-
tervals turn out to be a little shorter with refeze to theoretical intervals. It is
shown in Table 2. Changes of average length ofidente intervals caused by
sample size can be seen there as well.
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Table 2. Average length of confidence intervals

Type of interval
Sample size Standard Percentile Bias-corrected
10 1.399 1.143 1.148
20 0.923 0.841 0.843
30 0.740 0.696 0.697
50 0.565 0.545 0.545
100 0.396 0.389 0.389

Relative differences between length of confidemterivals for all pairs of
considered types are presented in Table 3.

Table 3. Relative differences between length of confidemtervals in %

Pairs of intervals
Sample Standard Standard Bias corrected
size — percentile — bias corrected — percentile
10 51t0 27% 7 t0 28% -6 to 16%
20 -1t0 19% -31t0 18% -7t0 9%
30 -5t017% -51t0 16% -6t0 7%
50 -8 10 13% -9t0 14% -6 t0 7%
100 -910 12% -10 to 13% -6 t0 7%

The larger is sample size, the less differencesdsat length of standard
and bootstrap intervals are and in general caséstoap intervals are shorter
than theoretical ones (because difference is mamlyositive range). Differ-
ences between both bootstrap confidence intervalsl@ht and almost equally
(except sample size 10 — see Table 3) distributegina 0. It informs that boot-
strap estimator for sample mean is only little bthand percentile method is
sufficient for calculating bootstrap confidenceeirval for mean. An example of
approximated density functions for distribution lefgth differences between
standard and percentile interval for different skngizes are shown in Fig. 3.
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Fig. 3. Approximated density function for distribution lehgth differences between standard
and percentile confidence intervals
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Fig. 4. Dependency of confidence intervals bounds on neahre of original sample

Difference and tendency of lower and upper bourtimesors of confi-
dence intervals were examined as well in dependefaypean and standard
deviation of original sample from which bootstragmples were generated.
Such analysis for sample sipee30 are shown in Fig. 4 and Fig. 5. Bottom
points and lines on each charts relate to estimditorlower bound of intervals
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and similarly upper points and lines apply to eations for upper bounds. For
readability only values for small fraction of saemplare visible here. One can
see that theoretical intervals in general includet&trap ones, because their
lower estimators are less and upper ones are lamgyer matching bounds of
bootstrap confidence intervals.
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Fig. 5. Dependency of confidence intervals bounds on stahdeviation value of base sample

Straight lines visible on both charts show lineegression functions for
these dependencies approximated for all 10000 lhateast squared method.
They inform about parallelism in dependency of lsufor bootstrap and theo-
retical intervals on mean and standard deviatioorigiinal sample. These lines
also confirm that standard confidence intervalggémeral include bootstrap
ones because lines for bootstrap methods lie betliees for theoretical ones.
Coefficients of linear functions for percentile ahihs-corrected methods are
approximately equal and functions are almost cogegach other.

Straight lines for lower and upper bound estimatwesalso parallel to each
other in the case of dependency on mean valueyaniheatrical in regards to an
axis OX in a case of dependency on standard dewialth this case estimators
are more scattered from approximated straights.
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For other sample sizes situation is similar to dieed above, but ranges for
achieved mean and standard deviations for drawplearare less for larger sam-
ples. Regression straight lines for all sizes aralfel for mean and they have less
angle of slope to axis OX for larger sizes in delegwy on standard deviation.

5. Conclusions

Bootstrap methods are sometimes used to consaétience intervals for
examined statistics. Computer simulations madarfean show that for small
sample size (n<30) these methods may be not relibbtause they do not
enough cover true value of estimated parametemfusle population. They
have less length in comparison to standard theaideimtervals. On the other
side bootstrap methods do not require some assampbout distribution of
examined statistics, so they can be applied totogetisg confidence intervals
in such cases. There are theorems for specifiat@ts and basic statistics,
such as mean or standard deviation, when bouncsnéidence intervals can be
calculated analytically by equations. However some$ assumptions about
normal distribution of examined characteristic rsthe edge of acceptance or
simply that distribution is unknown and applyingokm equations may lead to
bigger error than bootstrap methods offer. Of celssme simulations are re-
quired before usage these methods to experimeatalid all new cases to see
correctness of application of bootstrap methodspezific situation.

Two bootstrap methods: percentile and bias-cordegiee almost the same
intervals having similar coverage and length. #utes from symmetrical distri-
bution of mean. In such cases more complicatecaloutating bias-corrected
method is not necessary (Efron and Tibshirani 198jotstrap confidence
intervals have parallel tendency for dependencgnean and standard deviation
of original sample from which bootstrap intervate generated.
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WPLYW LICZEBNO SCI PROBY NA OSZACOWANIE
BOOTSTRAPOWYCH PRZEDZIALOW UFNO $CI
DLA SREDNIEJ

Streszczenie

Metodh symulacyjma badano bootstrapowe przedzialy dftialla sredniej z proby. W symula-
cjach uwzgtdniono dwie najbardziej popularne metody bootstrapapercentylow i z popravi
obchzenia. Otrzymane tymi metodami przedziaty poréwnamastandardowymi teoretycznymi prze-
dziatami dlasredniej. W badaniach uwzglniono nasfpujace aspekty: pokrycie rzeczywistej warto-
sci sredniej dla populacji, estymatory lewego i prawégaca przedziatu oraz jego diugn W
symulacjach sprawdzano wplyw liczelsooproby (od 10 do 100 elementéw) na otrzymane kiyni
Préby do badg w celu fatwego poréwnania z teoretycznymi przaideni oraz poprawrigi boot-
strapowych przedziatéw uféd, byly losowane ze standaryzowanego rozktadu abrego.

Stowa kluczowe:bootstrap, przedziaty ufdoi, srednia, rozktad normalny
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