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Summary 

Bootstrap confidence intervals for mean were examined. Two most popular bootstrap meth-
ods were used in computer simulations: percentile and with bias-correction. The bootstrap confi-
dence intervals were compared with standard theoretical intervals in aspects of coverage of true 
value, length and estimators of intervals bounds. Influence of sample size (from 10 to 100 ele-
ments) on considered results was examined. Normal distribution of observations was used in study 
because it was very known theorems about constructing and correctness of analytical confidence 
intervals. 
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1. Introduction 

In different scientific researches some statistics of examined characteristic 
is used to compare new methods with classical ones. Sometimes only difference 
between means is used to compare considered groups. Such comparison informs 
only about differences between drawn samples from populations. In a case 
when experimenter wants to compare whole populations, construction of confi-
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dence intervals is necessary. Often confidence interval can be calculated ana-
lytically on the basis of theoretical equations, but sometimes theory assump-
tions about considered statistics are not correct.  

Nowadays computers can be used to help a scientist in researches. Efron 
and Tibshirani (1991, 1993) described one of simulation methods called boot-
strap, which can be used to estimate confidence intervals. It has been success-
fully used to estimation of different statistics and their confidence intervals 
since then mainly in such disciplines as medicine, genetics, ecology, agriculture 
and others (Carpenter and Bithell, 2000; Scheiner and Gurevitch, 1993; Ro and 
Rannala, 2007; Wolfsegger and Jaki, 2006; Bochniak and Wesołowska-
Janczarek, 2005, 2006). The most important advantage of this method is that it 
does not require the assumption about distribution normality of studied feature, 
but in some cases it leads to incorrect conclusions (Efron and Tibshirani, 1993; 
Manichaikul at al., 2006; Schenker 1985; Young 1994). 

The aim of this paper is to examine influence of drawn sample size on cor-
rectness of bootstrap confidence intervals and estimation of length, lower and 
upper bounds of interval. It include short description of two mostly used types 
of bootstrap confidence intervals. The results obtained in simulations by boot-
strap methods are later compared with known theoretical results. Due to ability 
of easy comparison mean value is used in simulations. 

2. Construction of bootstrap confidence intervals 

Two types of bootstrap confidence intervals were examined: percentile and 
with bias correction (Efron and Tibshirani, 1991, 1993). They were used to 
construct confidence intervals for mean in aim to compare results obtained in 
simulations with known theoretical ones. In some cases the other bootstraps 
methods are used: bootstrap-t, bootstrap with bias correction and acceleration, 
non-studentized pivotal, test-inversion, studentized test-inversion. 

The percentile bootstrap method is the simplest and most commonly used 
method to construct bootstrap confidence intervals. The bootstrap technique 
estimates the precision of a statistic by approximating the unknown sampling 
distribution in two-step procedure. First, the unknown sampling distribution of 
values in the population is approximated by a discrete distribution. Then, many 
bootstrap samples are drawn from this distribution. The unknown sampling 
distribution is approximated by the distribution of estimates from many boot-
strap samples. 
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In a case when a statistic is applied for two populations there must be two 
parallel and separate processes of sampling, one for the first population and 
another one for the second population. Bootstrap samples are drawn from the 
first and the second discrete distribution respectively to calculate a single esti-
mator for difference between mean values of studied statistics. 

There must be at least 1000 bootstrap samples to create confidence interval. 
Suitable percentiles must be calculated to obtain confidence intervals on re-
quired significance level of α in percentile bootstrap method. For example 2.5th 
and 97.5th percentiles of a bootstrap distribution are used as the bounds of a 
0.95 confidence interval. To calculate these percentiles, estimators from 1000 
bootstrap replications must be sorted in order from the smallest to the largest. 
The 2.5th percentile is the average of the 25th and 26th largest values and simi-
larly the 97.5th percentile is the average of 975th and 976th values. 
Following symbols are used: 

θ  – estimated parameter, 

θ̂  – estimator of parameter, 

wθ̂ – value of estimator for base sample, 
*θ̂ – estimator obtained by bootstrap method, 
( )αθ̂  – percentile of rank α for distribution of estimator values for boot-

strap resample. 
 
In general case in bootstrap methods confidence interval has a form of 

 ( ) ( )( )UL
UL

αα θθθθ ** ,)ˆ,ˆ( =  (2.1) 

where: 

Lθ̂ – estimator of lower bound of interval, 

Uθ̂ – estimator of upper bound of interval, 

UL αα , – ranks for lower and upper percentiles. 

 
In percentile method bounds of estimated confidence intervals at required 

confidence level 1-α is defined by percentiles of rank: 

 2
αα =L  (2.2) 

 21 αα −=U  
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Percentile method assumes that median M* of distribution of estimator val-

ues for all bootstrap samples is equal to value wθ̂  of estimator for original sam-

ple. This case is presented on Fig. 1a. where an arrow shows median of boot-
strap sample distribution and parameter value for base sample as well.  

 

Fig. 1. An example of estimator values distribution for bootstrap samples in which median M*  

and parameter value 
wθ̂ for original sample are equal (left) and different (right) 

 
The situation described above does not always take place. Sometimes in-

fluence of a few disturbing values or distribution of parameter can cause that 
estimators of parameter for bootstrap samples are error biased. Such situation is 
presented on Fig. 1b where median of distribution of bootstrap samples parame-
ter is less from parameter value for base sample. This causes that generated 
percentile confidence interval is moved to less values. 

Bootstrap method with bias correction (Efron and Tibshirani 1993) permits to 
improve precision of percentile method in such cases. This method adds two steps 
after estimation of distribution of considered parameter for bootstrap samples:  
– calculating the fraction of bootstrap samples for which parameter value is 

less than parameter calculated for original sample,  
– calculating new interval bounds to comply bias correction. 

Let F be fraction of parameter estimators for bootstrap samples which are 
less than value of parameter for original sample. Then 

 ( )Fz 1
0

−Φ= , (2.3) 
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where Φ-1 signifies the inverse cumulative normal distribution N(0,1). Percen-
tiles estimating confidence interval with bias correction have the following 
ranks: 

 
( )( )2

02
α

α zzL +Φ=  (2.4) 

( ))1(

0
22
α

α −+Φ= zzU , 

where: 

    ( )αz - percentile of rank α for standard normal distribution. 

3. Computer simulations 

Computer simulations were carried out to estimate correctness of bootstrap 
confidence intervals. The observations were randomly drawn from population 
with standard normal distribution N(0,1). Intervals of significance level α=0.05 
were constructed for samples of size 10, 20, 30, 40, 50, 70 and 100. One thou-
sand bootstrap samples were drawn from original sample for construction of 
single confidence interval (percentile and with bias correction as well) as de-
scribed in the previous section.  

Confidence intervals constructed for mean by bootstrap methods were 
compared with standard theoretical intervals constructed for samples from nor-
mal distribution with unknown mean µ and unknown standard deviation σ. In a 
case of sample size n and confidence level α confidence interval for mean is 
well known and given by: 

 ( ) ( )
n
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n
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( )να ,t  – fractile of rank α of Student’s t distribution with ν  degrees of 
freedom. 

The following problems were considered for constructed intervals: 
– percentage coverage of mean real value equal 0 with comparison of stan-

dard analytical intervals coverage; confidence intervals were constructed 
for 10000 drawn samples of sizes mentioned above, 

– comparison of average length for different intervals, 
– relative difference of length for pairs of considered confidence intervals, 
– distribution of length difference for constructed intervals for the same sam-

ple in relationship with analytical values, 
– calculating estimators of intervals bounds in dependence of mean and stan-

dard deviation of drawn samples, 
– determining tendency of relation between bounds and mean as well as stan-

dard deviation. 
 
Simulations were made in Microsoft Excel 2003 PL Professional associated 

with usage of Visual Basic for Applications in Excel for programming neces-
sary functions to random drawing of numbers, constructing intervals and saving 
collected results which were graphically work out later. 

4. Results of computer simulations 

The bootstrap confidence intervals are not perfect. As one can see (Fig. 2) 
coverage of mean true value, which is 0 for standard normal distribution from 
which observations were drawn, does not have required level. Percentage cov-
erage of intervals should oscillate about 95% for confidence level α=0.05. 
Standard theoretical intervals (eq. 3.1) satisfy this requirement, but bootstrap 
intervals have always less coverage although it converges to 95% as n → ∞.  
It seems that sample size of 30 elements must be used at least to calculate quite 
correct bootstrap intervals (with coverage aprox. 93.52%).  
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Fig. 2. Percentage coverage of true value by confidence intervals 

 

Table 1. Coverage error for bootstrap confidence intervals 
 

Sample size Percentile Bias-corrected %1001 ⋅n
 

10 4.86% 4.89% 10.00% 

20 2.63% 2.56% 5.00% 

30 1.48% 1.51% 3.33% 

40 1.10% 1.07% 2.50% 

50 1.14% 1.11% 2.00% 

70 0.90% 0.87% 1.43% 

100 0.34% 0.34% 1.00% 

 
This fact is consistent with theorems that coverage error for two-sided con-

fidence intervals is of order ( ) %1001 ⋅nO  or sometimes even smaller – under 

assumption that ( ) σθθ ˆ/ˆ −  is smooth function of sample moments with asymp-
totic normal distribution (Hall, 1992). The exact values of coverage error ob-
tained in simulations with comparison to theoretical limiting function %1001 ⋅n  

are shown in Table 1.  
In the aim to find the reason of that fact following analyses were made in 

which length of constructed intervals was examined. Bootstrap confidence in-
tervals turn out to be a little shorter with reference to theoretical intervals. It is 
shown in Table 2. Changes of average length of confidence intervals caused by 
sample size can be seen there as well. 
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Table 2. Average length of confidence intervals 
 

 Type of interval 
Sample size Standard Percentile Bias-corrected 

10 1.399 1.143 1.148 

20 0.923 0.841 0.843 

30 0.740 0.696 0.697 

50 0.565 0.545 0.545 

100 0.396 0.389 0.389 

 
 

Relative differences between length of confidence intervals for all pairs of 
considered types are presented in Table 3. 

 
 

Table 3. Relative differences between length of confidence intervals in % 
 

 Pairs of intervals 
Sample 

size 
Standard  

– percentile 
Standard  

– bias corrected 
Bias corrected  
– percentile 

10 5 to 27% 7 to 28% -6 to 16% 
20 -1 to 19% -3 to 18% -7 to 9% 
30 -5 to 17% -5 to 16% -6 to 7% 
50 -8 to 13% -9 to 14% -6 to 7% 
100 -9 to 12% -10 to 13% -6 to 7% 

 
 

The larger is sample size, the less differences between length of standard 
and bootstrap intervals are and in general case bootstrap intervals are shorter 
than theoretical ones (because difference is mainly in positive range). Differ-
ences between both bootstrap confidence intervals are slight and almost equally 
(except sample size 10 – see Table 3) distributed around 0. It informs that boot-
strap estimator for sample mean is only little biased and percentile method is 
sufficient for calculating bootstrap confidence interval for mean. An example of 
approximated density functions for distribution of length differences between 
standard and percentile interval for different sample sizes are shown in Fig. 3. 
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Fig. 3. Approximated density function for distribution of length differences between standard  

and percentile confidence intervals 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

-0,4 -0,2 0 0,2 0,4

Mean of original sample

E
st

im
at

or
 o

f i
nt

er
va

l b
ou

nd

Left percentile

Left bias-corrected

Left standard

Left regr. bootstrap

Left regr. stand.

Right percentile

Right bias-corrected

Right standard

Right regr. bootstrap 

Regr. stand.

 
Fig. 4. Dependency of confidence intervals bounds on mean value of original sample 

 
Difference and tendency of lower and upper bound estimators of confi-

dence intervals were examined as well in dependency of mean and standard 
deviation of original sample from which bootstrap samples were generated. 
Such analysis for sample size n=30 are shown in Fig. 4 and Fig. 5. Bottom 
points and lines on each charts relate to estimators for lower bound of intervals 
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and similarly upper points and lines apply to estimators for upper bounds. For 
readability only values for small fraction of samples are visible here. One can 
see that theoretical intervals in general include bootstrap ones, because their 
lower estimators are less and upper ones are larger from matching bounds of 
bootstrap confidence intervals.  
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Fig. 5. Dependency of confidence intervals bounds on standard deviation value of base sample 

 
Straight lines visible on both charts show linear regression functions for 

these dependencies approximated for all 10000 data by least squared method. 
They inform about parallelism in dependency of bounds for bootstrap and theo-
retical intervals on mean and standard deviation of original sample. These lines 
also confirm that standard confidence intervals in general include bootstrap 
ones because lines for bootstrap methods lie between lines for theoretical ones. 
Coefficients of linear functions for percentile and bias-corrected methods are 
approximately equal and functions are almost covering each other.  

Straight lines for lower and upper bound estimators are also parallel to each 
other in the case of dependency on mean value and symmetrical in regards to an 
axis OX in a case of dependency on standard deviation. In this case estimators 
are more scattered from approximated straights. 
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For other sample sizes situation is similar to described above, but ranges for 
achieved mean and standard deviations for drawn samples are less for larger sam-
ples. Regression straight lines for all sizes are parallel for mean and they have less 
angle of slope to axis OX for larger sizes in dependency on standard deviation. 

5. Conclusions 

Bootstrap methods are sometimes used to construct confidence intervals for 
examined statistics. Computer simulations made for mean show that for small 
sample size (n<30) these methods may be not reliable because they do not 
enough cover true value of estimated parameter for whole population. They 
have less length in comparison to standard theoretical intervals. On the other 
side bootstrap methods do not require some assumption about distribution of 
examined statistics, so they can be applied to constructing confidence intervals 
in such cases. There are theorems for specific situations and basic statistics, 
such as mean or standard deviation, when bounds of confidence intervals can be 
calculated analytically by equations. However sometimes assumptions about 
normal distribution of examined characteristic is on the edge of acceptance or 
simply that distribution is unknown and applying known equations may lead to 
bigger error than bootstrap methods offer. Of course some simulations are re-
quired before usage these methods to experimental data in all new cases to see 
correctness of application of bootstrap methods to specific situation. 

Two bootstrap methods: percentile and bias-corrected give almost the same 
intervals having similar coverage and length. It results from symmetrical distri-
bution of mean. In such cases more complicated in calculating bias-corrected 
method is not necessary (Efron and Tibshirani 1993). Bootstrap confidence 
intervals have parallel tendency for dependency on mean and standard deviation 
of original sample from which bootstrap intervals are generated. 
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WPŁYW LICZEBNOŚCI PRÓBY NA OSZACOWANIE  
BOOTSTRAPOWYCH PRZEDZIAŁÓW UFNO ŚCI  

DLA ŚREDNIEJ  

Streszczenie 

Metodą symulacyjną badano bootstrapowe przedziały ufności dla średniej z próby. W symula-
cjach uwzględniono dwie najbardziej popularne metody bootstrapowe: percentylową i z poprawą 
obciąŜenia. Otrzymane tymi metodami przedziały porównano ze standardowymi teoretycznymi prze-
działami dla średniej. W badaniach uwzględniono następujące aspekty: pokrycie rzeczywistej warto-
ści średniej dla populacji, estymatory lewego i prawego końca przedziału oraz jego długości. W 
symulacjach sprawdzano wpływ liczebności próby (od 10 do 100 elementów) na otrzymane wyniki. 
Próby do badań, w celu łatwego porównania z teoretycznymi przedziałami oraz poprawności boot-
strapowych przedziałów ufności, były losowane ze standaryzowanego rozkładu normalnego. 

Słowa kluczowe: bootstrap, przedziały ufności, średnia, rozkład normalny 
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