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Summary

Some remarks concerning Johnsonsstfnsformation of critical values for Shapiro-Wak
W statistic and its goodness of fit to standardmrad quantiles for different sample sizes are
presented. Two another tests for multivariate néityneased on Johnson’s $ransformation of
W statistic are proposed.
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1. Introduction

There are a lot of tests for checking normalitydafa but as the best one,
especially for small sample size, is consideredpBbaVilk's test. Let us re-
mind this test.

Let X, X,,..., X, be independent identical distributed variablesnfraor-
mal distribution and Xy, <X, <...<X, be the ordered values of
X; Xp,..., X, . Shapiro-Wilk’'sW statistic (Shapiro and Wilk, 1965) is given by
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where a; are constants tabulated by Shapiro and Wilk (1966d

n
X ZEZXi . Small values oWV indicate nonnormality and critical valu&¥,
i=1
for n = 3(1)50are also tabulated in Shapiro and Wilk (1965).
Shapiro and Wilk propose also test based on thewolg transformation, using
Johnson’s (1949)Xistribution

G(W):y+ 5In[W_£j , (1.2)
where G(W) is distributed as standard normal. Tablesypd and € for sam-

ple sizesn = 3(1)50 are given in Shapiro and Wilk (1968) and Srivaatav

(2002). The lower tail of normal distribution indies nonnormality.
This Shapiro-Wilk's approximated test can be easilippted to multivariate
case. For example Srivastava and Hui (1987) protteséollowing approach.

Let X;,X,,...,X,, be independently distributed dskp (u,)]). Let X ZEZXi
n

i=1

n ]
and S:EZ(Xi —Y)(xi —Y) be the sample mean and sample covariance
i=1
matrix, respectively. LetH = (hl,...,hp) be an orthogonal matrix such that
S=HD_H’', whereD, = diag(ul,...,up) andu, >...>u, are eigenvalues
of S. Define y; =hixj ,i=1...,p; ]=1...,n. Now let us take univari-
ate Shapiro-Wilk's statistics
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where y,, <... <Y, are ordered statistics foth principal component. Sri-

vastava and Hui (1987) propose to take as a tasistst for multivariate nor-
mality the following one:

M = —ZiZ:: In[GD(G(W(i )))]

where G(W(i )) is the transformation (1.1) artb([)] is the cumulative distribu-

tion function of standard normal distribution. ltust be mentioned that Sri-
vastava and Hui (1987) took unbiased estimate oL,

n !
S=i12(xi —?)(xi —?) , instead of maximum likelihood one. However it
n—-17

was pointed by Hanusz and Tarebia (2008) as a mistake. The statidtic
under multivariate normality of;, is approximately distributed axgp as

W(i) are asymptotically independent am(G(W(i ))) are uniformly distributed.

Thus, large values dfl indicate nonnormality. Of course the statidficcan be
also used in univariate cage=1.

Srivastava and Hui (1987) also propose

M, = minfw()

P

as the second test statistic, the distribution lnittvis approximately given by
Pr(M, < x)=1-[1- ®(G(x))]".

This test rejects normality for small valuesdf, .

2. Remark on the approximation (1.1)

Statisticians using the approximation (1.1) showdt suppose that normal-
ity of G(W) improves when sample size increases. For edtle valuee is
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Fig. 1. Values of G, and quantile of standard normal distribution o= 005
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Fig. 2. Values of G, and quantile of standard normal distribution o= 001
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Fig. 3. Values of G, and quantile of standard normal distribution ot 0.1
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2

na,

evaluated by Shapiro and Wilk (1968) by means i least squares regres-

sionu =lz—z,whereu =InW_£
o O

taken as the minimum A&, namely

. The constantyy and & were

andzis distributed as standard normal.

Values employed in regression were quantileg, and W, for

p= 001,002,005 005025 025)075 005)095,098,099. Such values op
were to weight the goodness of fit in the tails.
Thus the transformation of critical valu¥¥, via (1.1) needn't fit better

the proper quantiles of normal distribution forgarn. It can be even worse.

W
The figures 1, 2 and 3 give values@f, = y + 5In[ £

E .
J as a function of

a

sample size i = 3,... 50) for a = 005, 0.01 and 0.1, it means for usually
used significance levels in testing normality. 8dines in the figures point
o (a).

3. Preliminary suggestion of two other tests for miivariate normality

Following Srivastava and Hui's (1987) idea of ShafWilk's (1965,1968)
statistics for principal components of covariananr S and using transforma-
tion (1.1) for them two another tests for multizde normality can be proposed.

The first of them can be based on test funct.jffnv, whereV is the av-

erage ofV, =G(W(i)). Under normality\/EV has got asymptotic standard

normal distribution. The lower tail of it indicatesnnormality.
The second test statistic can be takehla‘min{\/i} . Its asymptotic dis-

tribution, under normality, is given by the cumutatdistribution function of
the form F(x)zl—[l—db(x)]p. The lower tail of this distribution indicates

nonnormality. Thus critical values can be found/gs= qfl(l— V1i-a )

Both proposed tests require investigations asdi thpe | error and power
but preliminary researches seem to be promisirgures 4 and 5 present histo-
grams of proposed test functions obtained for 18&@ples of size 1{=2
generated from normal distribution. Solid linestlire figures show theoretical
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probability density function. In spite of the fabiat proposed test statistics are
not affine invariant, the histograms look similar fcorrelation coefficient

p=0and+09.

Fig. 4. Histogram for test functioq/BV for 1000 samples generated from normal distrilsutio
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Fig. 5. Histogram for test functiok for 1000 samples generated from normal distrilsutio
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UWAGI O PRZYBLIZONYCH TESTACH OPARTYCH NA STA-
TYSTYCE SHAPIRO-WILKA

Streszczenie

Podane § pewne spostrzenia dotycgce przeksztalcenia wad krytycznych statystyki
Shapiro-Wilka poprzez transformacywiazam z systemem rozktadéwgSJohnsona oraz ich
dobroci dopasowania do odpowiednich kwantyli rodiktanormalnego w zateosci od liczebno-
$ci proby. Zaproponowane, $akze dwa nowe testy wielowymiarowej normadnboparte o trans-
formacje statystyki Shapiro-Wilka.

Stowa kluczowe test normalngci, test wielowymiarowej normalioi, sytatystyka Shapiro-Wilka
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