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Summary 

We are concerned with crop rotation experiments with a test crop. We focus attention on 
some properties related to A-, E-, D- and MV-optimality. The paper is organized as follows. Sec-
tion 1 sets the scene in the contexts of crop rotations and contains crucial facts about information 
matrix of the design. Section 2 covers various kinds of optimality. In section 3 we provide nu-
merical results, practical example and final remarks. 

Key words and phrases: optimality, information matrix, crop rotation experiment, crop test  

Classification AMS 2000: 62K05 

1. Introduction 

This section is divided into three parts containing necessary background. 
First we discuss some specific aspects of crop rotation experiments (further 
details can be found in (Przybysz 1982a, Bronowicka-Mielniczuk 2007)). Re-
maining subsections describe briefly some facts about the linear model and 
information matrix for treatment contrasts. 
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1.1. Introduction to crop rotations experiments 

Crop rotation is the sequence of cropping where, at least two dissimilar 
types of crops follow each other on the same land over a period of years. Crop 
rotation is very valuable cultural control strategy. It maintains soil fertility, re-
duces soil erosion, helps to control weeds and some insect pests, eliminates the 
need of chemicals (both pesticides and fertilizers) and in consequence increases 
net profits. The arrangements of cropping sequences depend on a thorough 
knowledge of the crops grown and should be based on agro-ecological aspects 
of the production system (local climate, topography, soils).  

Experiments examined here will be assumed to satisfy: 
1. Two or more crop rotations are compared via a test crop (one selected 

species from among all examined plants). Statistical analysis covers test crop 
yields, only. 

2. Duration of the experiment equals to the least common multiple of rota-
tion lengths.  

3. The test crop appears in every year at least on one plot within each of 
compared rotations. 

4. Different sequences of species generate various levels of soil fertility in 
the plots and we treat them as the objects. 

5. During the full rotation objects from all compared crop rotations ought to 
meet each other. 

1.2. Linear model 

Throughout the paper we consider the linear model (Przybysz 1982b): 

 εϕγβαρµ 21 XXXXeXXXXy +++++++= ABRBBARM , (1.1) 

where y  is an observation vector, µ  denotes the mean value, ρ , α , β  are the 
fixed effects of replication, treatment and year, respectively, γ  and ϕ  represent 

interaction effects. XM is column vector of ones, XR, XA, XB, XAB are binary 
design matrices for blocks, objects, years and interactions, respectively. To 
complete the specification, we introduce random error components e, ε  due to 
experimental units and technical errors, respectively. Using classical assump-
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tions of independent distributions with zero mean and the constant variances 
2

1σ , 2
2σ , respectively, the covariance structure of y is IXXy 2

211

2

1 σσ += TCov . 
Model (1.1) can be written as:  

 ε21 XeXXΘy ++= , (1.2) 

by using augmented design matrix [ ]ABRBBARM XXXXXXX MMMMM=  and setting 

[ ]ϕγβαρµ MMMMM=Θ . We take the vector y  in order of blocks, objects and 

years (the fastest moving index corresponds to years).  
Under the model (1.2) the coefficient matrix of the reduced normal equations 

for estimates of treatment effects is =dC R-1 ( ) 






 ′− NNrD
k

1  , where ( )rD - represents 

diagonal matrix with ( )T
vrrr ,...,, 21=r  along the diagonal, ir  being a number of 

times the test crop appears on the plot receiving i-th treatment (sequence); k 

equals number of plots with the test crop in a single year; N is the usual treat-

ments versus years incidence matrix, in which one indicates that a test crop was 

on the plot, zero refers to the other species; R denotes number of replications. 

Matrix Cd is called an information matrix of the design. It is symmetric, non-

negative definite matrix with zero row and column sums. 

1.2. Treatment contrasts 

A treatment contrast is any linear combination αTs  of treatment effects, 
where 0T =1s . All treatment contrasts are estimable under the design d, if and 
only if rank(Cd) = ν – 1, in which case d is called connected. From now on, we 
assume that d is connected. 

Any generalized inverse of Cd is a covariance matrix for estimates of treat-
ment contrasts, that is, ( ) sCss −= d

ˆvar T2T σα . Let 
1210 −≤≤≤< dvdd λλλ K  be the 

nonzero eigenvalues of 
dC . Aside from 2σ , the 1−

diλ  are variances for basic con-

trasts (John 1987 p 25).  

( ) 






 ′− NNrD
k

1
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2. Optimality criteria 

Optimality criteria for evaluating and comparing different designs are  
related to estimation of linear parametric functions αTs . Strictly speaking, we 
indicate some statistical possessions of the designs in the context of maximal 
precision (in some special sense) with which estimates of treatment compari-
sons are made. In general, information matrix determines different optimality 
criteria (denoted by the letters A-average, E-extreme, D-determinant). We also 
present MV- optimality criterion. 

2.1. E-, A- and D-optimality 

The main question is “which experimental design is the “best” or which 
designs have important statistical properties from practical point of view?”. 
Various optimality criteria can be defined in terms of eigenvalues of informa-
tion matrix Cd.  

Letting ( ) ( ) 01
1

1

1

>






 −= ∑
−

=

− p,v/d
pv

i

p

dip λΦ , we define ( ) ( )dlimd pp
ΦΦ

00 →
=  and 

( ) ( )dlimd pp
ΦΦ

∞→∞ = . 

We shall say that a design d is pΦ  optimal if it minimizes the ( )dpΦ  values 

among all the possible designs. 
The following cases are of special interest here. 

0Φ : 
0Φ  optimality, also known as D-optimality, aims at minimizing ( ) 11

10

−−

=∏=
di

v

i
d λΦ . 

This kind of optimality is suitable in the case of looking for the shortest confi-
dence interval for an estimate for treatment contrast. A broad discussion of the 
D-optimality can be found in Shah and Sinha (1989 p. 56). There exists a graph-
theoretic formulation of D-criterion. 

1Φ : 1Φ  optimality is called A-optimality. It is well known and easy to establish 

that: A-optimal design minimizes the average variance of the estimates of all 
pairwise comparisons. 

∞Φ : The limit criterion ( ) { }
1

1 1

d

dii
maxd

λ
λΦ == −

∞
, corresponds to E-optimality.  

Observe that E-optimality aims at maximizing the minimum eigenvalue of Cd.  
It follows that E-optimal design minimizes the maximum variance among the 
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estimates of basic contrasts (John 1987 p. 25). This is equivalent to the finding 
designs which minimize the maximum variance among all estimates obtained 
for normalized contrasts (Constantine 1987 p. 354). 

To complete the picture, we next give a well-known property on the rela-
tionship between optimality criteria. 
If matrix Cd is completely symmetric matrix (i.e. its diagonal elements are con-
stant and its off-diagonal elements are constant), then following relation is ful-
filled (Shah, Sinha 1989 p. 10). For any pq > , if a design d is pΦ – optimal, 

then design d  is qΦ – optimal. 

Thus, we get relation between various optimality criteria. We can say, that for 
any design d with completely symmetric matrix dC : D-optimality implies  

A- and E-optimality, as well as A-optimality implies E-optimality. 

2.2.  MV-optimality 

The next criterion does not depend on the information matrix eigenvalues.  
A design d is called MV-optimal if it minimizes the maximum of the 

ijV , 

where ( ) 2σ−−−− −−+= jiijjjiiij CCCCV  is the variance of pairwise comparison com-

prising i-th and j-th treatment, where −
ijC  is the ij- th entry of a generalized in-

verse of Cd. Likewise E-optimality, this is a minimax criterion; which aims at 
minimizing the maximum loss (as measured by variance) for estimating the 
elementary contrasts. 

3. Optimal designs for crop rotation experiments 

3.1. Numerical results 

Let mm BBvv ,...,,,... 11=Π  denotes the experimental design for m crop  

rotations where sv  (s=1,…,m) is rotation length for s-th cropping sequence, sB  

is „a generating block” describing allocation of the test crop in s-th rotation 
under study. Using standard notation for cyclic designs, treatments are labelled 
by 10 −sv,..., . We restrict our attention to connected designs. A summary of 

numerical findings are included in Table 1 and 2, which gives the results for m = 2, 3 
respectively and v = 3, 4, 5; b denotes the number of years. 
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Table 1. Numerical results for m= 2 crop rotations 

 
m = 2 msvs ,...,1, =  b msBs ,...,1, =  d,0Φ  d,1Φ  d,∞Φ  ijVmax  

 421 == vv  b = 4 (0),(01) 1.266 1.25 2.366 4 

    (0),(012) .0833 .8452 1.3905 2.75 

    (01),(01) .0313 .6429 1 1.5 

    (01),(02) .0278 .619 1 1.5 

    (012),(01) .0038 .4677 .6508 1.2727 

    (012),(02) .0042 .483 .9045 1.375 

    (012),(012) .03651 .3512 .375 .7083 

 31 =v  42 =v  b = 12 (0),(0) .0212 .5476 .6667 1.3333 

    (0),(01) .03314 .2718 .375 .75 

    (0),(02) .03419 .2996 .5 .75 

    (0),(012) .0438 .2035 .3333 .6667 

 521 == vv  b = 5 (0),(01) 2.4299 1.4167 3.2203 4.4 

    (0),(02) 2.4299 1.4167 3.2203 4.4 

    (0),(013) .0564 .8822 1.5307 2.8727 

    (0),(012) .0564 .8822 1.5307 2.8727 

    (01),(01) .02 .7222 1.4472 1.7 

    (01),(02) .0128 .6333 .8 1.4 

    (02),(02) .02 .7222 1.4472 1.7 

    (013),(01) .02102 .4819 .69 1.2792 

    (013),(02) .02115 .4978 .7985 1.3474 

    (012),(01) .02115 .4978 .7985 1.3474 
    (012),(02) .02102 .4819 .4819 1.2792 
    (013),(013) .031 .367 .4701 .7697 

 31 =v  52 =v  b = 15 (0),(0) .0079 .531 .6667 1.3333 

    (0),(01) .04467 .2478 .3 .6 

    (0),(012) .05315 .1734 .2667 .5333 

    (0),(013) .05315 .1734 .2667 .5333 

    (01),(0) .03169 .3468 .5 1 

    (01),(01) .05307 .1713 .2477 .4553 

    (01),(012) .06303 .1177 .1346 .2578 

    (01),(013) .06303 .1177 .1346 .2578 
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Table 2. Numerical results for m=3 crop rotations 

 
3=m  msvs ,...,1, =  b msBs ,...,1, =  

d,0Φ  
d,1Φ  

d,∞Φ  ijVmax  

 4321 === vvv  b = 4 (0),(01),(01) .0509 .8712 1.809 3 

    (0),(01),(02) .0452 .8485 1.809 2.8333 

    (0),(012),( 01) .02531 .7126 1.3379 2.5455 

    (0),(012),(02) .02574 .7264 1.5991 2.5893 

    (02),(01),(01) .02165 .5682 .75 1.25 

    (02),(01),(02) .02211 .6091 1.5 1.5 

    (01),(012),(01) .03266 .4892 .728 1.2143 

    (01),(012),(02) .03258 .4857 .728 1.2143 

    (02),(012),(02) .03326 .5194 1.2844 1.375 

    (012),(012),(01) .04442 .412 .591 1.158 

    (012),(012),(02) .04453 .415 .711 1.188 

    (012),(012),(012) .05804 .345 .375 .694 

 
31 =v  

432 == vv  
b = 12 (0),(0),(0) .03473 .536 1 1.333 

    (0),(0),(01) .05616 .3278 .5468 1 

    (0),(0),(02) .05821 .356 .927 1.111 

    (0),(0),(012) .06635 .273 .427 .848 

    (0),(01),(01) .0622 .2241 .3125 .625 

    (0),(01),(02) .06206 .2213 .3125 .625 

    (0),(012),(01) .07303 .1886 .3 .6 

    (0),(012),(02) .07318 .1906 .3 .6 

    (0),(012),(012) .08509 .161 .292 .583 

    (01),(0),(01) .06435 .2604 .4694 .8889 

    (01),(0),(02) .06489 .269 .603 .917 

    (01),(0),(012) .07608 .222 .407 .81 

    (01),(01),(01) .07204 .174 .25 .417 

    (01),(01),(02) .07196 .173 .25 .417 

    (01),(012),(01) .08326 .1448 .1985 .3922 

    (01),(012),(02) .08336 .1461 .2427 .4048 

    (01),(012),(012) .09585 .12 .133 .267 
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3.2.  Application  

In this section, we discuss briefly the issue of application. In practice, we 
are primarily concerned with experiments set up to compare different crop rota-
tions. Rotation lengths shall be referenced by subscript indices by initial blocks. 
For example, we use (01)41=v  to denote four-course rotation with initial block  

[1 1 0 0 ] (one indicates that the test crop is on the plot). Examples of four-field 
cropping systems are given in Table 3 and Table 4.  

 

Table 3. The arrangement of experiment with four-course crop rotations 
 

year 
no 

A (75% wheat) B (50% wheat) 

 plot no plot no 
 1 2 3 4 1 2 3 4 
1 wheat bean wheat wheat wheat rape bean wheat 
2 wheat wheat bean wheat wheat wheat rape bean 
3 wheat wheat wheat bean bean wheat wheat rape 
4 bean wheat wheat wheat rape bean wheat wheat 

 
 

Table 4. The arrangement of experiment with four-course crop rotations 
 

A (75% wheat) C (50% wheat) 
plot no plot no 

year 
no 

1 2 3 4 1 2 3 4 
1 wheat bean wheat wheat wheat potato wheat pea 
2 wheat wheat bean wheat pea wheat potato wheat 
3 wheat wheat wheat bean wheat pea wheat potato 
4 bean wheat wheat wheat potato wheat pea wheat 

 
 
In the crop rotations considered wheat is treated as the test crop. According 

to notation, we are interested in crop rotation experiments described by the fol-
lowing generating blocks (012)

41=v
, (01)

42=v
 for Table 3 and (012)

41=v
, (02)

42=v
 

for Table 4. For such experiments we obtain (Table 1): 003800 .d, =Φ , 

467701 .d, =Φ , 65080.d, =∞Φ , 27271.Vmax ij = , and 004200 .d, =Φ , 48301 .d, =Φ , 

90450.d, =∞Φ , 3751.Vmax ij = , for A-B and A-C experiments, respectively.  

The arrangement of plants in Table 3 has better statistical properties than  
arrangement in Table 4, with respect to D-, A-, E- and MV-optimality. 
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3.3. Final remarks 

The study on optimality should be one of the elements of a well-designed 
crop rotation experiment. Let us notice, that increase in number of observations 
results in better statistical properties of the design. We observe that for designs 
with the same number of observations, the distribution of test crop differentiates 
the results. For example, for 4-fields rotations, scheme (02) v=4 dominates (01) v=4 
in conjunction with plans: (01) 41=v , (0) 41=v (01) 42=v , (01) 41=v (012) 42=v , 

(0) 31=v (01) 42=v , (01) 31=v (01) 42=v . We receive the reverse relation with designs: 

(012) 41=v , (02) 41=v (01) 42=v , (01) 31=v (012) 42=v .  

References 

Bronowicka-Mielniczuk U. (2007). Efektywność układu płodozmianowego. Colloquium Biomet-
ricum 37. 

Constantine G. (1987). Combinatorial theory and statistical design. Wiley, New York. 

John J.A. (1987). Cyclic designs. London, Chapman and Hall. 

Przybysz T. (1982a). Schematy eksperymentalne doświadczeń płodozmianowych. Roczniki Nauk 
Rolniczych Seria A 105, 7–15. 

Przybysz T. (1982b). Modele matematyczne doświadczeń płodozmianowych. Roczniki Nauk 
Rolniczych Seria A 105, 17–28. 

Shah K., Sinha B. (1989). Theory of optimal designs. Lecture Notes in Statistics 54, New Jork, 
Springer-Verlag. 

OPTYMALNOŚĆ DOŚWIADCZEŃ PŁODOZMIANOWYCH 

Streszczenie 

Celem pracy jest wskazanie pewnych statystycznych własności układów doświadczeń płodo-
zmianowych z rośliną testową. W szczególności, zainteresowani jesteśmy A-, E-, D- i MV-
optymalnością. Układ pracy jest następujący. W sekcji pierwszej przedstawiono niezbędne infor-
macje o doświadczeniach płodozmianach z rośliną testową oraz przypomniano kluczowe informa-
cje o macierzy informacji układu. Sekcja druga obejmuje róŜnorodne kryteria optymalności.  
W sekcji trzeciej zestawiono wyniki numeryczne związane z ideą optymalności dla układów  
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eksperymentalnych doświadczeń płodozmianowych z rośliną testową, podano przykład praktycz-
ny oraz uwagi końcowe. 

Słowa kluczowe: optymalność, macierz informacji, eksperyment płodozmianowy, roślina testowa 
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