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Summary 

The paper deals with a modelling and analysis of results of three factor experiments with 
control treatments which are included in levels of the third factor (C factor). It was assumed the 
experiments considered are carried out in incomplete split-plot × split-block designs. In particular 
a special attention was paid to possibilities and statistical consequences of applying the control 
treatments in the experiment. Moreover, tools are described which allow checking the general 
balance and stratum efficiency of the design, as well as the performance of the experiments in 
term of inference. Also a numerical example is presented to illustrate the method of the construc-
ting the design considered and the analysis of data under mixed linear model. 

Key words and phrases: augmented block design, control treatments, general balance, 
split-plot × split-block design, stratum efficiency, test treatments 

Classification AMS 1993: 62K10, 62K15 

1. Introduction 

The purpose of this paper is to present a method of a designing three factor 
experiments with control treatments and a modelling data obtained from them. 
The experiments are laid out in split-plot × split-block (SPSB) design. The 
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complete (orthogonal) SPSB designs are the most widely used in agriculture 
research (e.g. LeClerg et al., 1962,  Mucha, 1975, Federer and King, 2007, Wa-
das et al., 2004, 2005). In field experiments certain treatments such as types of 
cultivation, application of irrigation water etc., may be necessary to arrange 
them in strips (rows or columns) across each block. Then it is convenient to 
arrange the plots of the design in the following way: the columns (or the rows) 
of the split-block design are split into smaller strips to accommodate the third 
factor. So, the third factor will be in the split-plot design in the relation to the 
column (or row) treatments.   

In the present paper we will consider one of the cases of incomplete SPSB 
designs i.e. when a number of the levels of the third factor (say, C) is larger 
than the number of appropriate for them strips within each block. General 
methodology of the complete and incomplete  SPSB designs, i.e. designing, 
modelling and statistical analysis, was presented in AmbroŜy and Mejza (2003, 
2004b, 2006). Additionally in the present paper we assume that control treat-
ments are included in the levels of the third factor. The case of the SPSB de-
sign, when some control treatments are connected with another factor was con-
sidered in AmbroŜy et al. (2008).  

In the  paper we are interested in the designs which have general balance 
property only. 

General balance defines an important class of designs covering virtually all 
the traditional experimental designs and, in particular, those considered. In such 
designs all information matrices connected with treatment combinations mutu-
ally commute, and they have the same set of eigenvectors which define con-
trasts among treatment combination effects. It allows to joint information about 
the contrasts from different strata where they are estimated. With incomplete 
data sets, however, it may be difficult to fulfill all the conditions of general 
balance (Houtman and Speed, 1983, Mejza, 1992). In next chapter of the pre-
sent paper we will remind the condition that should be fulfilled by the informa-
tion matrices of treatment combinations of the SPSB designs. 

In designing the considered three factor experiment we will use an aug-
mented block design as generating subdesign, which statistical property can 
retain orthogonal block structure of the SPSB design, but allow unbalanced 
treatment structure. The incidence matrix of this subdesign is presented also in 
Kachlicka and Mejza (2000). 
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Augmented block designs (called also supplemented block designs) have 
been often used in planning factorial experiments, especially in a research with 
control or standard treatments (additional treatments). There are also situations 
in which an experimental material for certain treatments is limited. Then usu-
ally such treatments have less number of replications than the rest of treatments 
(see e.g. Caliński and Ceranka, 1974, Singh and Dey, 1979, Kachlicka et al., 
2000, 2001) 

In the modeling data obtained from such experiments we take into account 
the structure of an experimental material and a four-step randomization schema 
of the different kinds of units. With respect to the analysis of the obtained ran-
domization model with seven strata we will adopt the approach, typical to the 
multistratum experiments with orthogonal block structure (cf. Nelder, 1965a, 
1965b). 

2. Assumptions and notations 

Consider an (s × t × w) – experiment in which the first factor, say A, has s 
levels A1, A2, …, As, the second factor, say B, has t levels B1, B2, …, Bt and the 
third factor, say C, has w levels C1, C2, …, Cw. Let v (= stw) be the number of 
all treatment combinations.  

We assume that a three factor experimental design structure is the follow-
ing: we draw b blocks in such a way that they can be grouped into R super-
blocks, so each superblock contains b/R blocks. It should be underlined that 
number of superblocks and the number of blocks inside each superblock is 
strictly connected with an applied here constructing method of that design. Each 
block has a row-column structure with k1 (= s) rows and k2 (= t) columns of the 
first order, shortly, columns I. Then each column I has to be split into k3 (< w) 
columns of the second order, shortly, columns II. Here the rows correspond to 
the levels of the factor A, termed also as row treatments or A treatments, the 
columns I correspond to the levels of the factor B, called also column I treat-
ments or B treatments, and the columns II are to accommodate the levels of the 
factor C termed as column II treatments or C treatments. 
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In the paper we consider the incomplete SPSB design with respect to the C 
treatments, additionally we assume the C treatments consist of two groups 
( 21 www += ) called test and control treatments, respectively. 

 
Let us consider a randomization model of observations, the form and pro-

perties of which are strictly connected with the performed randomization pro-
cesses in the experiment. The randomization scheme of the SPSB design con-
sists of four randomization steps performed independently, that is by permuting 
blocks, rows, columns I and columns II. As a result the mixed model has the 
following form (AmbroŜy and Mejza, 2003, 2006) 

                   eDτ∆y ++= ∑
=

6

1f
f fξξξξ'' ,              ( ) τ∆'=yE ,  (2.1) 

where y is n dimensional vector of lexicographically ordered observations, 
where 3bstkn = , '∆  (n × v) is a known design matrix for v treatment combina-
tions, '

1D  (n × b), '
2D  (n × bs), '

3D  (n × bt), '
4D  (n × btk3), 

'
5D  (n × bst), '

6D  
(n × n), are design matrices for blocks, rows (within blocks), columns I (within 
blocks), column II (within columns I), whole plots (within blocks) and subplots 
(within whole plots) respectively, ττττ  (v × 1) is the vector of fixed treatment 
combination effects, 1ξξξξ  (b × 1), 2ξξξξ  (bs × 1), 3ξξξξ  (bt × 1), 4ξξξξ  (btk3 × 1), 

5ξξξξ  (bst × 1), 6ξξξξ  (n × 1), e (n × 1) are random effect matrices of  blocks, rows, 
columns I, columns II, whole plots, subplots and technical errors, respectively. 
The dispersion structure of the linear model (2.1) can be written as: 

 ∑
=

=
6

0
)(

f
ff PV γγ ,  (2.2) 

where fγ  are nonnegative variance components and the }{ fP  are a family of 
known pairwise orthogonal projectors adding up to the identity matrix (cf. 
Houtman and Speed, 1983).  The forms of these matrices are given in AmbroŜy 
and Mejza (2003, 2006). The range space }{ fPℜ  of fP , f = 0, 1,…, 6, is 
termed the f-th stratum of the model and the }{ fγ  are unknown stratum vari-
ances. The ranks of the projectors fP  are as follows: 
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1)(r 0 =P ,  1)(r 1 −=bP ,  )(b 1s)(r 2 −=P ,   )t(b 1)(r 3 −=P ,         (2.3)  

)1()(r 34 −= kbtP ,  )1)(1()(r 5 −−= tsbP ,  )1(t)1()(r 36 −−= ksbP  

 
From (2.2) and the properties of the projectors Pf  it follows that considered 
design has an orthogonal block structure (cf. Nelder, 1965a, Houtman and 
Speed, 1983).  

So, the model (2.1) can be analyzed using the methods developed for 
multistratum experiments. In this case, we have zero stratum (0) generated by 
the vector of ones, inter-block stratum (1), inter-row (within the block) stratum 
(2), inter-column I (within the block) stratum (3), inter-column II stratum (4) 
(within the column I), inter-whole plot (within the block) stratum (5), and inter-
subplot (within the whole plot) stratum (6). 

In this case we have 6 mentioned above main strata in which stratum analy-
ses may be performed. The statistical analyses of submodels related to the dif-
ferent strata are based on algebraic properties of stratum information matrices 
for treatment combinations, which are defined as 

 ∆∆∆∆∆∆∆∆ ′= ff PA ,        f = 1, 2, …, 6.  (2.4)  

The presented SPSB designs will be characterized according to their effi-
ciency of an estimation of treatment combination comparisons (called also or-
thogonal (basic) contrasts) in the  strata with respect to the following general 
balance property: 

 f
δ

ff
δ

f ArAArA −
′′

− =      (2.5) 

for   f, f ′ = 1, 2, ...,  6; ff ′≠  and  )111( 21 v/r,...,/r,/rdiag=δ−r , where r is 

the vector of replications of the treatment combinations ],,,[ 21 ′= vrrr Kr . 

Stratum efficiency factors (noted by εfh ) for a set of orthogonal contrasts 
(noted by τch′ ) are eigenvalues of the information matrices fA , f = 1, 2,…,6  

with respect to -δr . The contrasts are connected with comparisons among main 
effects of the considered factors and interaction effects between them. 
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In the considered SPSB designs the general hypotheses concerning factor A 
effects, factor B effects and the interaction A × B effects will be testable in one 
stratum only, which is appropriate for these effects. It can be shown (AmbroŜy 
and Mejza, 2006) that all contrasts among effects of the A treatments will be 
estimable in the inter-row (within the block) stratum (2). It means that general 
hypothesis connected with the factor A is testable in this stratum only. Simi-
larly,  general hypothesis connected with the factor B will be testable in the 
inter-column I (within the block) stratum (3) only and general hypothesis con-
nected with the interaction A × B will be testable in the inter-whole plot (within 
the block) stratum (5). Other contrasts among main effects of the factor C and 
all interaction contrasts connected with this factor will be estimable in one stra-
tum only or in two appropriate strata  (see Example). 

The necessary sum of squares for “treatments” (f)  in Table 1 can be  
obtained from the formula 

 2])([SST
fh

h
fhf

∧
′∑= τcε ,         f = 1, 2,...,       6            

while the sum of squares for errors are as follows 

 SSE f  = SSY f   - SST f ,     where     SSY f = y’Pf y.             

These sums are sufficient to build the appropriate F-tests. 
 
 
 

Table 1. ANOVA in the f-th stratum,  f = 1, 2, .., 6 

Source of variation DF SS E(MS) 

“Treatments” (f) )r( fTf A=ν  SSTf fTf γν  + τAτ f′  

Error (f) 
TffEf ννν −=  SSEf fEf γν  

Total (f) )r( ff P=ν  SSYf ff γν  + τAτ f′  
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3. Construction method of the augmented SPSB designs 

In the paper we consider one case of a construction of the augmented SPSB 
design using traditional method based on Kronecker product of matrices (⊗) 
(cf. AmbroŜy et al., 2004, AmbroŜy and Mejza, 2003, 2004a, 2006, Singh and 
Dey, 1979).  

So the incidence matrix with respect to blocks of the SPSB design is of the 
form: 

 Cts N11N ⊗⊗=1 ,  (3.1) 

where *dC NN =  is an incidence matrix of the augmented subdesign d* for C 
treatments (the column II treatments). The vectors s1  and t1  present one block 
incidence matrices for the factors A and B in the SPSB design. It means that A 
treatments and B treatments are in randomized complete block (RCB) sub-
designs. 

We assume the C treatments consist of two groups, test and control treat-
ments, 21 www += . The test C treatments (w1) are allocated as in a RCB sub-
design and additional (control) C (2w ) treatments as in an incomplete sub-
design. So, the incidence matrix *dN  has the following form (see, Kachlicka 
and Mejza, 2000): 

 








⊗
′

= '
RbqR

*d
/3

31

11I
N

bw 11
.  (3.2) 

In this subdesign we have b3 blocks with 3

~
k  (= 1w ) units. The blocks are 

grouped into R superblocks of the same size (b3/R blocks). The superblocks are 
then supplemented by q (different in each superblock) additional treatments, i.e. 

Rqw =2 . So, the number of units inside each block in the design d* is equal to 

qkk += 33

~
.  

Let *dC  )( CC=  be information matrices for C treatments in the sub-

designs. This matrix has two different eigenvalues 10 =∗ε  and 
3

3
1

~

k

k
=∗ε  with 

multiplicities equal to RwwwqR −+=−+−+=∗
2110 )1()1(1ρ  and 11 −=∗ Rρ ,  
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respectively. It can be shown that the first class of efficiency equal to ∗
0ε  (= 1) 

is connected with the comparison 1) between the test group and the control 

group of the C treatments (TC vs. CC ), 2) among control C treatments inside 

each superblock ( CC1 ), 3) the test C treatments only (TC ). The second class of 

efficiency equal to ∗
1ε  refers to the comparisons among the control C treat-

ments between the superblocks (CC2 ).  

Finally, parameters of the incomplete SPSB design are as follows 

   stwv = , 3bb = , 3stkk = , Cts r11r ⊗⊗= ,  ])/([
21 33 ′′′= wwC Rbb 11r M  (3.3) 

where v, b, k, r , rC denote the number of the treatment combinations, the num-
ber of the blocks, the size of the blocks, the vector of replication of the treat-
ment combinations, the vector of replication of C treatments, respectively.  

4. Example 

To illustrate the theory presented in the paper, consider a (2 × 2 × 7) –  
experiment of type SPSB. Note the number of A treatments and the number of 
B treatments are equal to two, so s = t = 2 while the number of C treatments  
w = 7. Suppose that the C treatments are allocated in the columns II according 
to the incidence matrix given in (3.2): 

 





























=

1100

1100

0011

1111

1111

1111

1111

*dN
. 

It was assumed (only for illustration) that three test C treatments  (w1 = 3) 
are allocated in a RCB design in four blocks (b3 = 4) of size equal to 3 (3

~
k = 3). 

These blocks are grouped into two (R = 2) superblocks, each composed of two 
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blocks. Each superblock (with two blocks) of the RCB design is augmented 
with q = 2 different control C treatments. So, in the experiment 42 == Rqw  
different control C treatments will appear. The parameters of the augmented 
subdesign for the C treatments are as follows:  

w = 7,  b3 = 4,  k3 = 5,  ]2,2,2,2,4,4,4[ ′=Cr ,  10 =∗ε , 50 =∗ρ , 6,01 =∗ε , 11 =∗ρ . 

Remaining factors, A and B (s = t = 2) are as in a complete (orthogonal) SPSB 
design. 

Finally,  the considered SPSB design is described by the incidence matrix 

1N  given in (3.1) and has the form *221 dN11N ⊗⊗= . In accordance to (3.3) 
its parameters are: 

s = t = 2, w = 7,  28== stwv ,  4=b ,  20=k ,  ]2,2,2,2,4,4,4[22 ′⊗⊗= 11r . 

Figure 1 shows a row-column structure of one block in the SPSB design and its 
division into smaller strips. 
 
 

   

  

EUs (columns I) 
 for the B treatments  

EUs (columns II) 
for the C treatments 

 ↓ ↓  ↓ ↓ ↓ ↓ ↓ 

→         
 

 
       EUs (rows) 
for the A treatments 

→         

 

 

Fig. 1. The structure of experimental units of a different order inside each block in the considered 
SPSB design 

 

 

The sample layout (before four step randomization) of the augmented SPSB 
design in the Example is illustrated with Figure 2.  
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Superblock 1 

                         Block 1                                                                       Block 2            
 B1 B2   B1 B2 

 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5   C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

A1            A1           

A2            A2           

 

Superblock 2 

                          Block 3                                                        Block 4            
 B1 B2   B1 B2 

 C1 C2 C3 C6 C7 C1 C2 C3 C6 C7   C1 C2 C3 C6 C7 C1 C2 C3 C6 C7 

A1            A1           

A2            A2           

 

Fig. 2. The sample layout (before randomization process) of the considered SPSB experiment design 

 

According to the above plan the A treatments, B treatments and C treat-
ments are allocated on the rows, columns I and columns II, respectively. The 
treatment combinations with the control treatments C4 – C7 are replicated twice 
in this experiment. 

Statistical properties of the considered design are strictly connected with 
the algebraic properties of the stratum information matrices for the treatment 
combinations (2.4). These matrices are (cf. AmbroŜy and Mejza, 2006): 

 

)
4

1
(

20

1
CC*d*d41 rrNNJA ′−′⊗= ,      

*d*d2223 )
2

1
(

10

1
NNJIJA ′⊗−⊗= ,  

*d*d2222 )
2

1
(

10

1
NNJJIA ′⊗⊗−= ,    )

5

1
(

2

1
*d*dC224 NNrIJA ′−⊗⊗= δ , 

*d*d22225 5

1
)

2

1
()

2

1
( NNJIJIA ′⊗−⊗−= ,   )

5

1
()

2

1
( **dC2226 dNNrIJIA ′−⊗⊗−= δ , 
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where 










′⊗′
′′

=





























=′
22234

4333

22

24

2200222

2200222

0022222

0022222

2222444

2222444

2222444

11I11

1111
NN d*d*

, 










′′′′
′′′

=





























=′
4434

4333

48

816

4444888

4444888

4444888

4444888

8888161616

8888161616

8888161616

1111

1111
rr CC

. 

 
It can be shown that above information matrices satisfy the condition (2.5). 

The eingenvalues of these information matrices calculated with respect to 
r δ  are called stratum efficiency factors (see Table 2). They refer to the eigen-
vectors which generate orthogonal contrasts. 
Let  

 2/]1,1[11 ′−== ba ,   2/]1,1[22 ′== ba , 

 22/]0,0,0,0,0,1,1[1 ′−=c ,  22/]1,1,1,1,0,0,0[5 ′−−=c , 

 62/]0,0,0,0,2,1,1[2 ′−=c ,        662/]3,3,3,3,4,4,4[6 ′−−−−=c , 

 2/]0,0,1,1,0,0,0[3 ′−=c ,  20/]1,1,1,1,1,1,1[7 ′=c . 

 2/]1,1,0,0,0,0,0[4 ′−=c , 

. 
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The eigenvectors lkjh cbap ⊗⊗=   (h = 1, 2,..., 28;  j = k = 1, 2;  l = 1, 

2,..., 7) are  r δ-orthonormal, i.e., satisfy the conditions 1=′ hh prp δ  and  

0=′ ′hh prp δ , for h ≠ h',  h, h' = 1, 2,..., 28. Since 01A =28f ,  f > 0, the last ei-

genvector 28p   may be chosen as 28
1 1
n

, where n = 80. Let us note that 

hh prc δ=  (h < 28) define (basic) contrasts of the form τch′ ,    h = 1, 2, ..., 27. 

They play fundamental role in an investigation of statistical properties of the 
SPSB design, in ANOVA and in a statistical inference. 

Statistical properties which are necessary in ANOVA of the augmented 
SPSB design are given in Table 2.  All calculations can be do by different pro-
grams for example Excel and GenStat. Degrees of freedom connected with the 
contrasts stand for the numbers of estimable contrasts in each stratum. The 
ranks of the projectors fP  were obtained from (2.3). 

It can be noticed that using the augmented SPSB experiment design from 
the Example we loss information about the contrasts among the control C 

treatments ( CC2 ) and interaction contrasts connected with them, only. These 
contrasts are estimated with not full efficiency in two strata. The remaining 
contrasts are estimable with full efficiency in appropriate stratum as in a com-

plete SPSB design (A, B, A × B, CT, CC1 , 
TC vs. CC , A × TC , A × CC1 , A × 

( TC vs. )CC , B × TC , B × CC1 , B × ( TC vs. )CC , A × B × TC , A × B × CC1 , 

A × B × ( TC vs. )CC ). 
 

Table 2. Stratum efficiency factors corresponding to estimable orthogonal contrasts from the Example 
 

Sources of variation Degrees of freedom Efficiency factors 
 the inter-block stratum (1)  

 control C treatments CC2  
∗
1ρ  = 1 1 – ∗

1ε = 0,4 

 Error (1) r(P1) – 1 = 2  
 the inter-row (within the block) stratum (2)  

 A s – 1 = 1 1 

A × CC2  1)1( 1 =− ∗ρs  1 – ∗
1ε = 0,4 

 Error (2) r(P2) – 2 = 2  

 the inter-column I (within the block) stratum (3)  

 B t – 1 = 1 1 

B × CC2   1)1( 1 =− ∗ρt  1 – ∗
1ε = 0,4 

 Error (3) r(P3) – 2 = 2  
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 the inter-column II (within the column I) stratum (4)  

 C w – 1 = 6  

     test C treatments TC     ∗
0ρ  – 3 = 2 1 

    control C treatments CC1    ∗
0ρ – 3 = 2 1 

    control C treatments CC2    ∗
1ρ  = 1 ∗

1ε  = 0,6 

    TC vs. CC      1 1 

 B × C (t – 1)(w – 1) = 6  

     B × TC     2)3)(1( 0 =−− ∗ρt  1 

    B × CC1     2)3)(1( 0 =−− ∗ρt  1 

    B × CC2     1)1( 1 =− ∗ρt  ∗
1ε  = 0,6 

    B × ( TC vs. )CC     11)1( =⋅−t  1 

 Error (4) r(P4) – 12 = 20                         

 the inter-whole plot (within the block) stratum (5)  

 A × B  (s – 1)(t – 1) = 1 1 

A × B × CC2  1)1)(1( 1 =−− ∗ρts  1 – ∗
1ε = 0,4 

 Error (5) r(P5) – 2 = 2  

 the inter-subplot (within the whole plot) stratum (6)  

A × C (s – 1)(w –  1) = 6  

     A × TC    2)3)(1( 0 =−− ∗ρs  1 

    A × CC1    2)3)(1( 0 =−− ∗ρs  1 

    A × CC2    1)1( 1 =− ∗ρs  ∗
1ε  = 0,6 

    A ×  ( TC vs. )CC    11)1( =⋅−s  1 

A × B × C (s – 1)(t – 1)(w –1) = 6  

    A × B × TC    2)3)(1)(1( 0 =−−− ∗ρts  1 

   A × B × CC1    2)3)(1)(1( 0 =−−− ∗ρts  1 

   A × B × CC2    1)1)(1( 1 =−− ∗ρts  ∗
1ε  = 0,6 

   A × B × ( TC vs. )CC    11)1)(1( =⋅−− ts  1 

 Error (6) r(P6)  - 12 = 20  
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4. Remarks 

1. Further statistical analysis connected with general and particular hy-
potheses can be performed according to procedures given in AmbroŜy and Me-
jza (2006).  

2. Statistical inferences (estimates and tests) about the contrasts which are 
estimated in two strata can be obtained using the information separately from 
one stratum only or performing for them the combined estimation and testing 
based on information from these strata in which they are estimable. The com-
bined estimators usually possesse better statistical properties than the stratum 
BLUEs of the same contrast. Hence, the estimator combining is worth consider-
ing (Caliński and Kageyama, 2000). Some combining methods of information 
from two strata are described in AmbroŜy and Mejza (2006) also. 
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MODELOWANIE I ANALIZA DOŚWIADCZEŃ TYPU  
SPLIT-PLOT ×××× SPLIT-BLOCK Z OBIEKTAMI KONTROLNYMI  

W OBRĘBIE CZYNNIKA C 

Streszczenie 

Praca dotyczy modelowania i analizy wyników trójczynnikowych doświadczeń z obiektami 
kontrolnymi, które są włączone do poziomów trzeciego czynnika (C). Przyjęto, Ŝe doświadczenia 
były załoŜone w układzie niekompletnym split-plot × split-block. Szczególną uwagę zwrócono w 
pracy na moŜliwości i konsekwencje zastosowania obiektów kontrolnych w doświadczeniu. Po-
nadto, zostały opisane narzędzia pozwalające na sprawdzenie zarówno właściwości ogólnego 



KATARZYNA AMBRO śY, IWONA MEJZA 126 

zrównowaŜenia i warstwowej efektywności układu, jak i moŜliwości wnioskowania z tego typu 
doświadczeń. Przedstawiono takŜe numeryczny przykład, ilustrujący metodę konstrukcji rozwaŜa-
nego układu i analizy danych przy modelu liniowym mieszanym. 

Słowa kluczowe: rozszerzony układ blokowy, obiekty kontrolne, ogólne zrównowaŜenie, układ 
split-plot × split-block, warstwowa efektywność, obiekty testowe 
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