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Summary

The paper deals with the estimation problem ofvidial weights of objects in spring ba-
lance weighing design satisfying the E-optimalititerion. It is assumed that we have several
kinds of spring balances with different precisiolmsthis case the lower bound for the maximum
eigenvalue of the inverse of the information matfxestimators is obtained. The conditions for
this lower bound to be attained are given. Moreptle incidence matrices of balanced incom-
plete block designs are used to construct regulgptiEnal spring balance weighing designs.
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1. Introduction

The optimality of designs plays a main role in theory of the experimen-
tal design. In many papers concerning the optimatfite weighing experiments
are considered. In a spring balance, there is onbtpan and any number of
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objects can be placed on the pan. Then the popmtaides a rearing which
represents the total weight of the objects on #re p

Nowadays, the spring balance weighing design imtrae for the experi-
mental design connected not only with a spring tida but with each experi-
ment in which the results we can describe as tigaticombination of unknown
weights of objects with coefficients of this comdiion equal to 1 or 0. In fact,
the weighing designs are applicable to a greaetyanf problems of measure-
ments, not only for weights, but of lengths, voliagresistances and concentra-
tions of chemicals in mixtures.

Let us suppose we want to determine the unknowght®iof p objects in

N weighing operations. We assume that recorded ohi$ens are independent
and there are not systematic errors. One possésigml is to weigh each object
separately. But by choosing a more complicated kvegydesign in which se-
veral objects are being placed on the pan togetfeegbtain the “better” weigh-
ing design than previously. This technique appearedpaper by Yates (1935)
and was improved and advanced by Hotelling (194d)NMood (1946).

Of course, an experimenter want to choose a weggtiesign that is opti-
mal with respect to some condition. In the literatiuseveral criteria are often
expressed in terms of the information matrix. Origthem is E-optimality,
minimizing the maximum eigenvalue of the inversetled information matrix.
The statistical interpretation of E-optimality iket following: the E-optimal
design minimizes the maximum variance of the compbrestimates of the
parameters. For various types of optimality werédePukelsheim (1993).

2. The linear model

Let us consider an experiment in which we want étednine unknown
weights of p objects usingN measurement operations. Suppose that the re-
sults of this experiment can be written as

y=Xw+e,

wherey is an N x1 random vector of the recorded observatiods: (xij) is
an Nxp (N = p) matrix of known elements, witlk; =1 or O according to

if in the i-th measurement operation thjeth object is included or excluded,
W is a px1 vector of unknown weights of the objects abds an N X1 ran-
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dom vector of errors. We assume that there are ystersatic errors, i.e.
E(e) =0, andVar(e) = o°G, where0,, denotes theN x1 column vector of

zeros, ands is an N X N positive definite matrix of known elements.
The matrix X is called the design matrix of a spring balancé@hiag de-
sign with the covariance matrig?G . Let M NYp(O,l) be the set of alN x p

binary matrices ank M /(0]).
The normal equations estimatiy are of the form

X'GIXW=XGy,

whereW is the column vector of estimated weights.

A spring balance weighing design is singular orsnogular depending on
whether the matrixX G X is singular or nonsingular, respectively. From the
assumption thaG is positive definite it follows that the matriX G X is
nonsingular if and only if the matriX X is nonsingular, i.erank(X) = p.

If X G™'X is nonsingular the generalized least-squares asimof W is
given by the formulav = (X G X)X G ™y . The covariance matrix of¢
is Var(w) = JZ(X'G_1X)_1. The matrix X G XX is called the information

matrix of W .
E-optimality can be described in terms of the maximeigenvalue of the

matrix (X'G_1X)_l, Amax[(X'G_1X)_1] or equivalently in terms of the
minimum eigenvalue of the matrX G X , A, (X G X).

The concept of E-optimality was considered in Raghao (1971) and
Banerjee (1975). In the case Gf =1, wherel , is the Nx N identity ma-

trix, Jacroux and Notz (1983) established the ujppend for A, (X X) and

gave some examples of the E-optimal spring balamghing designs.
In the present paper we consider the experimewhich we havet kinds

of spring balances with different precisions. Lt denote the number of
measurement operations, in whithth balance is usech =12,...,t. In this
case, the covariance matrix of erroriéG , where
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t
WhereZnh =N andg, >0, h=1..,t.
h=1

Further, let us suppose thAt be partitioned correspondingly to the matrix
G,ie.

X = (2.2)

There are two types of problems connected withBtogtimality criterion.
One is to determine how small the maximum eigerevatis (X G *X)™ can

be — that is, to determine the lower bound fbr [(X G™X)™], where
XOMy , (01) with the covariance matrig®G given by (2.1). The other is

to find design matriceX for which the lower bound foA__[(X G ™*X)™] is
attained.

3. E-optimal spring balance weighing design

In this section we give some new results concertiirgglower bound for
Ao (X' GX)™] in two separate cases. The first contains epembjects
and the second odp objects.
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Lemma 3.1. Let 1 be the set of all pxp permutation matrices

and let M be a pxp matrix. If Vzi' > P'MP then
P pon

where tr(M) is the trace of

Y p(p-1) p(p-1)
M, Q(M) denotes the sum of the off diagonal elementsMfandl, is the

p % 1 vector of ones. Moreovetr(M) = tr(M) andQ(M) = Q(M).

The proof of Lemma 3.1 is based on the conceptasfalix and Notz
(1983).

Lemma 3.2.Let G be of the form (2.1) anK M , (O) denote the matrix
of the full column rankp given by (2.2).

(X'G‘1X)'l] > M

1.If p is even, them =
ptr(G™)

max[

. . _ 4p
2. If dd, themd  [(XG*X)H>—— |
piso e, . l( )] (p+ DG

Proof. Let M denote the average & = X G X over all elements of1 as

in Lemma 3.1 for the design matrix of the form (2.2) withG given by (2.1).
Then

MM~ S AdPMPY =2 T4 EMP) = M) B.0)
P e P e

because for positive definite matrices, the maximaigenvalue of the sum of
matrices is less than or equal to the sum of theirman eigenvalues of these
matrices. Furthermore, the maximum eigenvalue dfrimés invariant under
each permutation of rows and (the same on) columns.

Now, let k;; denote the number of ones in th¢h row of X, 1<k, < p.
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-1
t n,

By Lemma 3.1. we obtaitmax(M _1) = p(p —1)|:zz ghlkhi (p—Kpi ):l )
h=1i=1

As we want to minimized,;, (M _1) , we should find the maximum value for

t n,
> dntkni(P—Knyi).

h=1i=1
t n, p2
If piseven,Y > gptky (P—kp) <—tr(G™). (3.2)
h=1i=1 4
t n, p2 -1
Similarly, if p is odd, > > gp'ky (p—ky) < tr(G™). (3.3)

h=1i=1 4

Hence the lemmem

Definition 3.1. Any nonsingular spring balance weighing design wita de-
sign matrix X given by (2.2) and the covariance matrix of errar<G , where
G is given by (2.1) is said to be regular E-optiifad__ [(X G ™X)™] attains
the lower bound in Lemma 3.2., i.e.

max

Lo = 4p-1) . .
1. A [(X G X)) =222 2L it pis even,
max ptr(G™)

or

- 4p , .
2. A XXy =— -+ if dd.
maxl( )] (p+Dtr(G) if piso

Remark 3.1. Notice that if the design matriX with the covariance matrix

o°G is regular E-optimal then it is also E-optimal ides But the inverse im-
plication is not true. Moreover, the E-optimal dgsin the set of design matri-
ces exists but the regular E-optimal design mayerist.

Theorem 3.1.Any nonsingular spring balance weighing desigrhlite design

matrix X of the form (2.2) and the covariance matrix obesro°G given by
(2.1) is regular E-optimal



ON REGULAR E-OPTIMALITY OF SPRING BALANCE ... 171

1.for even p, if each row of X, contains exactlyg ones and

. ~ -2 ~ ,
XGX=—P G +-LP "% tehH11
4(p-1) (G0, 4(p-1) (G %1

or

- +
2.for odd p, if each row ofX,, contains eitherTl or pTl ones and

h=1

. +1 _ 1 _ LU .
X'G X :p4—ptr(G oI R UREEIC N+4Y gi'm 11,1,

for some 0<m, <n;,, where m, is the number of rows oiX, with
p+1

ones.

Proof. Since the proofs for even and ogid are similar, we give the proof only
for the case of evemp . Notice thatA__ [(X G ™X)™] attains the lower bound
in Lemma 3.2. if equalities in (3.1) and (3.2) hold

The equality in (3.2) holds if and only ik, zg for eachi =1,...,n, and
h=1...,t.

It follows easily thattr(X'G_1X) zgtr(G_l) and Q(X'G_1X) :@tr@ﬂ).
The theorem will be proved X GIX=M in (3.1) and we apply Lemma
3.1. to give the form oX G7IX. m

For the special case & =1, , we receive the theorem given in Jacroux
and Notz (1983).
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4. BIB designs leading to regular E-optimal
spring balance weighing designs

Now, we will consider the construction of the resguE-optimal spring ba-
lance weighing design with matriX given by (2.2) and the covariance matrix

of errors°G , whereG s given by (2.1) using incidence matrices of bae
lanced incomplete block designs (BIB designs).
A balanced incomplete block design (see e.g. Raghav(1971)) is an ar-

rangement ofv treatments irb blocks of sizek (k < V), such that each treat-
ment occurs i blocks and every pair of distinct treatments osdogether in
exactly A blocks. The number¥,b,r ,k,A are called the parameters of the
BIB design and they are related by the followingntities vr =bk and
A(v=1) =r(k-1). By writing the incidence matrix of the BIB design
N =(n;) wheren; =1 or O according as the-th treatment occurs or does
not occur in thej -th block, we haveNN" = (r —A)1, +A1,1,.

Let N, be the incidence matrix of the balanced incompbétek design
with parametersv,b, ,r,, K, ,A,, h=122,...,t. Now, in (2.2) we assume that

Xp = N'h and then we have

In this designb,, =n, andv=p.
Moreover, we assume that the parameterand b, satisfy the necessary
conditions for the existence of BIB designs.

Lemma 4.1.The existence of BIB designs with the parameter®, and

1. rhzﬂ,kh:X,/]h:M,ifviseven,
2 2 4(v-1)
b,(v-1) v-1 (V-3
? h_th ’kh:T’Ah_bh4v ' ©
+ +
h_bh(V 1)’kh V+1,/]h:—bh(v 1),ifvisodd,
2v 2 4v
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implies the existence of the regular E-optimal mprbalance weighing design
with design matrixX given by (4.1).
Proof. For the design matrixX of the form (4.1) withG given by (2.1), we

t

obtain X GX =Y gp!NpNy  and NNy = (= A, + A, 1,1,
h=1

h=1....t.

Since N,, is the incidence matrix of the BIB design, it lear that ifv is even,

b -2
we havek, :%, which impliesr, =7h and A, :M. An easy com-

4(v-1)

putation shows thaiX G X = Ltr(G _1) I, + v-2
4(v-1) 4(v-1)

tr(G™)1,1, .

Thus X is regular E-optimal.
The proof forv odd is similar.m

Under the conditions given in Lemma 4.1. we forrteike following theorem.
For more details about the methods of construabioBIB designs we refer a
reader to e.g. Raghavarao (1971), Koukouvinos &tei®y (1997).

Theorem 4.1.The existence of BIB designs with the parameters

1. if viseven,

. v=2t,b=4t-2r=2t-Lk=t,A=t-1,t=23...

i. v=4t+4,b=8t+6,r=4t+3 k=2t+2A=2t+1 and 4t+3
is a prime or a prime power

2. if visodd

. v=4t-1=b,r=2t-1=k, A=t-Lt=23...

i. v=4t-1=Dbr=2t=k,A=t,t=12...

iii. v=4t+1b=8t+2r=4t,k=2t,A=2t-1 and 4t+1 is a
prime or a prime power

iv. V=4t+1lb=8+2r=4t+2k=2t+1,A=2t+1 and 4t+1
is a prime or a prime power

implies the existence of the regular E-optimal mprbalance weighing design
with design matrixX given by (4.1).

Proof. It is easy to see that the parameters given in i.. and 2. i.- iv. satisfy
the conditions given in Lemma 4.4.
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5. Examples

In this section we give two examples of two consédecases. In both
cases, we assume that we have two balances atsposdl, for example one of
higher precision and the other as usual. For thienaton of the individual
weights of the objects we want to use the regulaptimal spring balance
weighing design.

Example 5.1.Let us consider the problem of estimatifo= 4 objects using

N =12 measurement operations. The covariance matrixrofie 0°G is
Gls 050;
0606 gZI 6
matrix X we can use the BIB design with the paramevers4, b=6, r =3,
k=2, A =1, with the incidence matrix

given by the matrixG :{ } 0,,9, >0. To construct the design

1 00101
11 0010
N, =N, = .
011001
001110
. N,
In this case, we have X = N | and then
2
-1 -1
XG*X:”«5)|¢J“G Mﬂ; with Amﬂxcﬂxrﬂ:?éég,
r

what it means that the conditions from Theorem &:& fulfilled.

Example 5.2.Let us consider the problem of estimatipg= 7 objects us-
ing N =14 measurement operations. The covariance matrixrofec’G is
gll 7 O707
0,0, g,l,

matrix X we can use the BIB designs with parameters aridence matrices,
respectively:

given by the matri% =[ } 0,,9, > 0. To construct the design

v=7=b r=3=k A, =1. v=7=Db, r,=4=k, A,=2



ON REGULAR E-OPTIMALITY OF SPRING BALANCE ... 175

1000101 0111010
1100010 00111001
0110001 1001110
N,=[1 011000 N,=/0 100 111
0101100 1010011
0010110 1101001
00010 1 1] 111010 0

We can obtain the regular E-optimal spring balawegghing design with
the design matrix of the form:

N, . 1 o
. X =| 1| andthenx'cix = 2MC D), WG, o

N, 7 7

N -1
i. X=| 2|, andthenX G™X :w(l S+1.10)

7
L 2]
N, | 2tr(G ™),

7

-1 + -1 ‘
+tr(G )7 79, 11,

2| and thenX G*X =

N
N
N, -
ii. X= N, ,and thenX G™X =
N
N

-1 -1 -1
2tr(G )|7+tr(G )+ 70, 11
7 7

In cases i.-iv. we receivel _[(X G™*X)™] :%, what it means that
2tr(G™)

the conditions from Theorem 3.1. are fulfilled.
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O REGULARNEJ E-OPTYMALNO SCI SPREZYNOWYCH
UKLADOW WAGOWYCH

Streszczenie

Praca péwiccona jest zagadnieniu E-optymalnej estymaciji niegola miar obiektéw w
modelu spgzynowego uktadu wagowego przy zaémiu, ze mamy dospnych kilka uradzen
pomiarowych o rénej precyzji. W rozwzanym modelu zostato podane dolne ograniczenie dla
najwiekszej wartdci wkasnej macierzy kowariancji estymatora wektpasametrow oraz okékm-
no warunki, dla ktérych podane ograniczenie jesigrscte. Ponadto opisano metokonstrukcji
regularnych E-optymalnych sgiynowych uktadéw wagowych wykorzystigh macierze incyden-
cji uktadoéw zrownowaonych o blokach niekompletnych.

Stowa kluczowe: E-optymalné¢, spezynowy uktad wagowy, uktad zréwnowany o blokach
niekompletnych
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