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Summary 

The paper deals with the estimation problem of individual weights of objects in spring ba- 
lance weighing design satisfying the E-optimality criterion. It is assumed that we have several 
kinds of spring balances with different precisions. In this case the lower bound for the maximum 
eigenvalue of the inverse of the information matrix of estimators is obtained. The conditions for 
this lower bound to be attained are given. Moreover, the incidence matrices of balanced incom-
plete block designs are used to construct regular E-optimal spring balance weighing designs. 
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1. Introduction 

The optimality of designs plays a main role in the theory of the experimen-
tal design. In many papers concerning the optimality, the weighing experiments 
are considered. In a spring balance, there is only one-pan and any number of 
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objects can be placed on the pan. Then the pointer provides a rearing which 
represents the total weight of the objects on the pan.  

Nowadays, the spring balance weighing design is the name for the experi-
mental design connected not only with a spring balance, but with each experi-
ment in which the results we can describe as the linear combination of unknown 
weights of objects with coefficients of this combination equal to 1 or 0. In fact, 
the weighing designs are applicable to a great variety of problems of measure-
ments, not only for weights, but of lengths, voltages, resistances and concentra-
tions of chemicals in mixtures.  

Let us suppose we want to determine the unknown weights of p  objects in 

N  weighing operations. We assume that recorded observations are independent 
and there are not systematic errors. One possible design is to weigh each object 
separately. But by choosing a more complicated weighing design in which se- 
veral objects are being placed on the pan together, we obtain the “better” weigh-
ing design than previously. This technique appeared in a paper by Yates (1935) 
and was improved and advanced by Hotelling (1944) and Mood (1946).  

Of course, an experimenter want to choose a weighing design that is opti-
mal with respect to some condition. In the literature, several criteria are often 
expressed in terms of the information matrix. One of them is E-optimality, 
minimizing the maximum eigenvalue of the inverse of the information matrix. 
The statistical interpretation of E-optimality is the following: the E-optimal 
design minimizes the maximum variance of the component estimates of the 
parameters. For various types of optimality we refer to Pukelsheim (1993). 

2. The linear model 

Let us consider an experiment in which we want to determine unknown 
weights of p  objects using N  measurement operations. Suppose that the re-
sults of this experiment can be written as 

ewXy += , 

where y  is an 1×N  random vector of the recorded observations, ( )ijx=X  is 

an pN ×  )( pN ≥  matrix of  known elements, with 1=ijx  or 0  according to 

if in the i -th measurement operation the j -th object is included or excluded, 

w  is a 1×p  vector of unknown weights of the objects and e is an 1×N  ran-
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dom vector of errors. We assume that there are no systematic errors, i.e. 

N0e =)E(  and Ge 2)Var( σ= , where N0  denotes the 1×N  column vector of 

zeros, and G  is an NN ×  positive definite matrix of known elements. 
The matrix X  is called the design matrix of a spring balance weighing de-

sign with the covariance matrix G2σ . Let ( )1,0M , pN  be the set of all pN ×  

binary matrices and )1,0(, pNΜ∈X .  

The normal equations estimating w  are of the form 

yGXwXGX '' 11 ˆ −− = , 

where ŵ  is the column vector of estimated weights. 
A spring balance weighing design is singular or nonsingular depending on 

whether the matrix XGX ' 1−  is singular or nonsingular, respectively. From the 

assumption that G  is positive definite it follows that the matrix XGX ' 1−  is 

nonsingular if and only if the matrix XX '  is nonsingular, i.e. p=)rank(X .  

If XGX ' 1−  is nonsingular the generalized least-squares estimator of w  is 

given by the formula yGXXGXw '' 111 )(ˆ −−−= . The covariance matrix of ŵ  

is 112 )()ˆVar( −−= XGXw 'σ . The matrix XGX ' 1−  is called the information 

matrix of ŵ . 
E-optimality can be described in terms of the maximum eigenvalue of the 

matrix 11 )( −− XGX ' , ])[( 11
max

−− XGX 'λ  or equivalently in terms of the 

minimum eigenvalue  of the matrix XGX ' 1− , )( 1
min XGX ' −λ .  

The concept of E-optimality was considered in Raghavarao (1971) and 
Banerjee (1975). In the case of NIG = , where NI  is the NN ×  identity ma-

trix, Jacroux and Notz (1983) established the upper bound for )(min XX 'λ  and 
gave some examples of the E-optimal spring balance weighing designs. 

In the present paper we consider the experiment in which we have t  kinds 
of spring balances with different precisions. Let hn  denote the number of 

measurement operations, in which h -th balance is used, th ,,2,1 K= . In this 

case, the covariance matrix of errors is G2σ , where 
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where Nn
t

h
h =∑

=1

 and 0>hg  , th ,,1K= .  

 
Further, let us suppose that X  be partitioned correspondingly to the matrix 

G , i.e. 
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 (2.2) 

There are two types of problems connected with the E-optimality criterion. 

One is to determine how small the maximum eigenvalue of  11 )( −− XGX '  can 

be – that is, to determine the lower bound for ])[( 11
max

−− XGX 'λ , where 

)1,0(, pNΜ∈X  with the covariance matrix G2σ  given by (2.1). The other is 

to find design matrices X  for which the lower bound for ])[( 11
max

−− XGX 'λ  is 

attained. 

3. E-optimal spring balance weighing design 

In this section we give some new results concerning the lower bound for 

])[( 11
max

−− XGX 'λ  in two separate cases. The first contains even p  objects 

and the second odd p  objects.   
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Lemma 3.1. Let Π  be the set of all pp ×  permutation matrices  

and let M  be a pp ×  matrix. If  ∑
Π∈

=
P

'MPPM
!

1

p
  then 

'

)1(

)Q(

)1(

)Q()tr(
ppp ppppp

11
M

I
MM

M
−

+








−
−= , where )tr(M  is the trace of 

M , )Q(M  denotes the sum of the off diagonal elements of  M  and p1  is the 

1×p  vector of ones. Moreover, )tr()tr( MM =  and )Q()Q( MM = . 
The proof of Lemma 3.1 is based on the concept of Jacroux and Notz 

(1983).  
 
Lemma 3.2. Let G  be of the form (2.1) and )1,0(, pNΜ∈X  denote the matrix 

of the full column rank p  given by (2.2).  

1. If p  is even, then 
)tr(
)1(4

])[( 1
11

max −
−− −≥

G
XGX '

p

pλ . 

       2. If p  is odd, then 
)tr()1(

4
])[( 1

11
max −

−−

+
≥

G
XGX '

p

pλ . 

Proof. Let M  denote the average of XGXM ' 1−=  over all elements of Π  as 
in Lemma 3.1 for the design matrix X  of the form (2.2) with G  given by (2.1). 
Then  

)()(
!

1
])[(

!

1
)( 1

max
1

max
1

max
1

max
−

Π∈

−

Π∈

−− ==≤ ∑∑ MPMPMPPM
P

'

P

' λλλλ
pp

 

 (3.1) 

because for positive definite matrices, the maximum eigenvalue of the sum of 
matrices is less than or equal to the sum of the maximum eigenvalues of these 
matrices. Furthermore, the maximum eigenvalue of matrix is invariant under 
each permutation of rows and (the same on) columns. 
Now, let hik  denote the number of ones in the i -th row of hX , pkhi ≤≤1 . 
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By Lemma 3.1. we obtain 

1

1 1

11
max )()1()(
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As we want to minimize )( 1
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−Mλ , we should find the maximum value for 

)(
1 1

1
hi

t

h

n

i
hih kpkg

h

−∑∑
= =

− . 

If p  is even, )tr(
4

)( 1
2

1 1

1 −

= =

− ≤−∑∑ G
p

kpkg hi

t

h

n

i
hih

h

.

 

(3.2) 

Similarly, if p  is odd, )tr(
4

1
)( 1

2

1 1
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= =

− −≤−∑∑ G
p

kpkg hi

t

h

n

i
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(3.3) 

Hence the lemma.  

 
Definition 3.1. Any nonsingular spring balance weighing design with the de-
sign matrix X  given by (2.2) and the covariance matrix of errors G2σ , where 

G  is given by (2.1) is said to be regular E-optimal if ])[( 11
max

−− XGX 'λ  attains 

the lower bound in Lemma 3.2., i.e.  
 

1. 
)tr(

)1(4
])[(

1
11

max −
−− −=

G
XGX '

p

pλ , if p  is even,  

or 

2. 
)tr()1(

4
])[(

1
11

max −
−−

+
=

G
XGX '

p

pλ , if p  is odd. 

  
Remark 3.1. Notice that if the design matrix X  with the covariance matrix 

G2σ  is regular E-optimal then it is also E-optimal design. But the inverse im-
plication is not true. Moreover, the E-optimal design in the set of design matri-
ces exists but the regular E-optimal design may not exist. 
 
Theorem 3.1. Any nonsingular spring balance weighing design with the design 
matrix X  of the form (2.2) and the covariance matrix of errors G2σ  given by 
(2.1) is regular E-optimal  
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1. for even p , if each row of hX  contains exactly 
2

p
 ones and  

'111 )tr(
)1(4

2
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)1(4 ppp p

p

p

p
11GIGXGX ' −−−

−
−+

−
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or 

2. for  odd p , if each row of hX  contains either 
2

1−p
 or 

2

1+p
 ones and  

'

1

1111 ]4)tr()3[(
4

1
)tr(

4
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t
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pp
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11GIGXGX ' ∑

=

−−−− +−++=
  

for some hh nm ≤≤0 , where hm  is the number of rows of hX  with 

2

1+p
ones.   

 
Proof. Since the proofs for even and odd p  are similar, we give the proof only 

for the case of even p . Notice that ])[( 11
max

−− XGX 'λ  attains the lower bound 

in Lemma 3.2. if equalities in (3.1) and (3.2) hold. 

The equality in (3.2) holds if and only if  
2

p
khi =  for each hni ,,1K=  and 

th ,,1K= .  

It follows easily that )tr(
2

)tr( 11 −− = GXGX' p
 and )tr(

4

)2(
)Q( 11 −− −= GXGX' pp

. 

The theorem will be proved if MXGX ' =−1  in (3.1) and we apply Lemma 

3.1. to give the form of XGX ' 1− .  

For the special case of NIG = , we receive the theorem given in Jacroux 

and Notz (1983).  
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4. BIB designs leading to regular E-optimal  
spring balance weighing designs 

Now, we will consider the construction of the regular E-optimal spring ba- 
lance weighing design with matrix X  given by (2.2) and the covariance matrix 
of errors G2σ , where G  is given by (2.1) using incidence matrices of the ba- 
lanced incomplete block designs (BIB designs). 

A balanced incomplete block design (see e.g. Raghavarao (1971)) is an ar-
rangement of v  treatments in b  blocks of size k ( )vk < , such that each treat-
ment occurs in r  blocks and every pair of distinct treatments occurs together in 
exactly λ  blocks. The numbers v ,b , r ,k ,λ  are called the parameters of the 
BIB design and they are related by the following identities bkvr =  and 

)1()1( −=− krvλ . By writing the incidence matrix of the BIB design 

)( ijn=N  where 1=ijn  or 0  according as the i -th treatment occurs or does 

not occur in the j -th block, we have '' )( vvvr 11INN λλ +−= . 

Let hN  be the incidence matrix of the balanced incomplete block design 

with parameters v , hb , hr , hk , hλ , th ,,2,1 K= . Now, in (2.2) we assume that 

'
hh NX =  and then we have  
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.                                                (4.1) 

In this design hh nb =  and pv = . 

Moreover, we assume that the parameters v  and hb  satisfy the necessary 

conditions for the existence of BIB designs.  
 

Lemma 4.1. The existence of BIB designs with the parameters v , hb  and 
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=λ , if v  is odd, 
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implies the existence of the regular E-optimal spring balance weighing design 
with design matrix X  given by (4.1). 
Proof. For the design matrix X  of the form (4.1) with G  given by (2.1), we 

obtain ∑
=

−− =
t

h
hhhg

1

'11 NNXGX '  and '' )( vvhvhhhh r 11INN λλ +−= , 

th ,,1K=  .  

Since hN  is the incidence matrix of the BIB design, it is clear that if v  is even, 

we have 
2

v
kh = , which implies 

2
h

h

b
r =  and 

)1(4

)2(

−
−

=
v

vbh
hλ . An easy com-

putation shows that '111 )tr(
)1(4

2
)tr(

)1(4 vvv v

v

v

v
11GIGXGX ' −−−

−
−+

−
=  . 

Thus X  is regular E-optimal. 
The proof for v  odd is similar.  

Under the conditions given in Lemma 4.1. we formulate the following theorem. 
For more details about the methods of construction of BIB designs we refer a 
reader to e.g. Raghavarao (1971), Koukouvinos and Seberry (1997).  

  
Theorem 4.1. The existence of BIB designs with the parameters 
1. if v  is even, 

i. K,3,2,1,,12,24,2 =−==−=−== tttktrtbtv λ  

ii.  12,22,34,68,44 +=+=+=+=+= ttktrtbtv λ  and 34 +t  
is a prime or a prime power 

2. if v  is odd 
i. K,3,2,1,12,14 =−==−==−= ttktrbtv λ  

ii.  K,2,1,,2,14 =====−= ttktrbtv λ  

iii.  12,2,4,28,14 −===+=+= ttktrtbtv λ  and 14 +t  is a 
prime or a prime power 

iv. 12,12,24,28,14 +=+=+=+=+= ttktrtbtv λ  and  14 +t  
is a prime or a prime power 

 
implies the existence of the regular E-optimal spring balance weighing design 
with design matrix X  given by (4.1). 
 
Proof. It is easy to see that the parameters given in 1. i.- ii. and 2. i.- iv. satisfy 
the conditions given in Lemma 4.1.  
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5. Examples 

In this section we give two examples of two considered cases. In both 
cases, we assume that we have two balances at our disposal, for example one of 
higher precision and the other as usual. For the estimation of the individual 
weights of the objects we want to use the regular E-optimal spring balance 
weighing design. 
Example 5.1. Let us consider the problem of estimating 4=p  objects using 

12=N  measurement operations. The covariance matrix of errors G2σ  is 

given by the matrix 







=

62
'
66

'
6661

I00

00I
G

g

g
, 0, 21 >gg . To construct the design 

matrix X  we can use the BIB design with the parameters 4=v , 6=b , 3=r , 
2=k , 1=λ , with the incidence matrix  
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In this case, we have 




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I
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XGX '
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)tr(

3
])[(
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11

max −
−− =

G
XGX 'λ , 

what it means that the conditions from Theorem 3.1. are fulfilled.  
  
Example 5.2. Let us consider the problem of estimating 7=p  objects us-

ing 14=N  measurement operations. The covariance matrix of errors G2σ  is 

given by the matrix 







=

72
'
77

'
7771

I00

00I
G

g

g
, 0, 21 >gg . To construct the design 

matrix X  we can use the BIB designs with parameters and incidence matrices, 
respectively:  

17 bv == , 11 3 kr == , 11 =λ ;      27 bv == , 22 4 kr == , 22 =λ  
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We can obtain the regular E-optimal spring balance weighing design with 

the design matrix of the form: 
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iv.  







=

'
1

'
2

N

N
X , and then '

77

1
1

1

7

1
1

7

7)tr(

7

)tr(2
11

G
I

G
XGX '

−−−
− +

+=
g

. 

 

In cases i.-iv. we receive 
)tr(2

7
])[(

1
11

max −
−− =

G
XGX 'λ , what it means that 

the conditions from Theorem 3.1. are fulfilled. 
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O REGULARNEJ E-OPTYMALNO ŚCI SPRĘśYNOWYCH 
UKŁADÓW WAGOWYCH 

Streszczenie 

Praca poświęcona jest zagadnieniu E-optymalnej estymacji nieznanych miar obiektów w 
modelu spręŜynowego układu wagowego przy załoŜeniu, Ŝe mamy dostępnych kilka urządzeń 
pomiarowych o róŜnej precyzji. W rozwaŜanym modelu zostało podane dolne ograniczenie dla 
największej wartości własnej macierzy kowariancji estymatora wektora parametrów oraz określo-
no warunki, dla których podane ograniczenie jest osiągnięte. Ponadto opisano metodę konstrukcji 
regularnych E-optymalnych spręŜynowych układów wagowych wykorzystującą macierze incyden-
cji układów zrównowaŜonych o blokach niekompletnych. 

Słowa kluczowe: E-optymalność, spręŜynowy układ wagowy, układ zrównowaŜony o blokach 
niekompletnych 
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