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Summary

The paper concerns three tests for multivariatenabty based on the Shapiro-Wilk W sta-
tistic for the principal components of a covarianoatrix. Two of them were proposed by
Srivastava and Hui (1987), the third was introdubgddanusz and Tardsika (2008b). The type
| errors of these tests at significance levels 0.5 and 0.01 are evaluated both for the sample
and residuals in the two data groups. The powetheotests under consideration against chosen
alternative distributions are also presented imltlo¢ sample and residual cases.
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1. Introduction

The Shapiro-Wilk W statistic (1965)
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is considered by many authors as the best statistichecking univariate nor-
mality of data, especially for small sample sizes this formula

Xay S Xz S... < X, are ordered values of the samptg X,,...,X,. Small
values ofW indicate nonnormality. The constarats,, and critical valued\, ,
for n= 3(1)50 are tabulated in Shapiro and Wilk (1965). Roy<tt#82) intro-
duced approximation fom, , in the casen >50. Such tables together with
critical values W, , and many other results for the Shapiro-Wilk test be

found, among other places in Wagner (1990).
Shapiro and Wilk also proposed another test basetthe following trans-
formation of theW statistic, using Johnson’s (1949) @stribution

G(W)=y+6|n(\iv_:/\‘/€j : (1.2)

where In denotes a natural logarithm a(E(W) is approximately distributed as
standard normal. Tables with & and € for sample sizes) = 3(1)50 are given
in Shapiro and Wilk (1968) as well as in many otpapers, for example in
Wagner and Btaczak (1992). Ifn > 50 then estimated values gf, & and €

can be obtained through the outcomes of Shapird-aamtia (1972) or Royston
(1982). The lower tail of normal distribution indies nonnormality.

Statistic (1.1) was adopted by Srivastava and (887) for the multiva-
riate case, who introduced two tests as follows.

Let X;,X,,...,X, be (p><1) independent random vectors with an unknown

, : 18

expected value ofu and a covariance matrix aE. Let X =—2X ; and
n<s
j=1
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n

1 = - . .
S= —Z(xj —x)(xj —x) be the sample mean and sample covariance matrix,
n<
j=1
respectively. Definey; =h{xj, i=1...,p; j=1...,n, whereh, are the
eigenvectors o8, corresponding to eigenvalues. Now let us take univari-

ate Shapiro-Wilk statistic

H i

. 1 _

W(|)=n—u Zlajv”(yi(n’fl—j)_yi(j)) I=1--,p,
1 ]=

where y,, <... <Y, are ordered statistics for theth principal component.

The first test statistic for multivariate normaljgyoposed by Srivastava and Hui
(1987) is the following:

M, = —zzp“ln[qn(c;i )], (1.2)

where G, = G(W(i)) is the transformation (1.1) an®(() is the cumulative
distribution function of the standard normal distion. Under normalityM ,
is approximately)(gp distributed. Large values d¥l, indicate nonnormality. It

should be emphasized that the maximum likelihodiinese of S should be
applied in the calculation, not the unbiased edemahis fact was pointed out
by Hanusz and Tarasika (2008a).

The other test for multivariate normality propodmd Srivastava and Hui
(1987) is based on the statistic

M, = min{w(i)}. (1.3)

i=1,...,p

The distribution oM, , under normality, is approximately given by

Pr(M, < x)=1-[1- ®(G(x))]". (1.4)
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This test rejects normality for small valuesdf, .

Hanusz and Tarasska (2008b) introduced another test statistic dsting
multivariate normality, in accordance with Srivastaand Hui's (1987, 2002)
idea of Shapiro-Wilk statistics for the principainsponents of covariance ma-
trix S with the use of transformation (1.1). This tess laasimplier form than

p
(1.2), namely = \/B G, whereG zlzGi . Under normality, the statistic
i=1
V displays asymptotic standard normal distributioom® preliminary results
concerning this test were given in Hanusz and Tiaska (2009). Namely, type
| error at a significance level of 0.05 fgrand powers oM;, M, andV were
evaluated against chosen alternative distributibmeugh simulation studies
based on 1000 generated samples.

The present paper is a continuation of those ily&sbns. Now, type | er-
rors for all three testdvl;, M, andV at significance levels 0.1, 0.05 and 0.01
are evaluated for both samples and residuals inghwaps of data with equal
and unequal numbers of observations. The powerhéothree tests under con-
sideration against chosen alternatives are alsermdated both in the case of
samples and residuals.

All simulations were conducted in the R programRvelopment Core
Team, 2008) with 10,000 data sets being generateddh case.

2. Type | error study

In order to evaluate type | errors in the sampkedar test statistidsl,, M,
andV 10,000 random samples of simke=10 and n =20 from ap-variate
normal distribution @ =2 and p =3) were generated. Nominal significance

levels were taken as 0.1, 0.05 and 0.01. Thed Bypors were determined as
the fraction of samples for which, respectively,

0 the values oM; exceedefll—a)-th quantile of3, distribution,
e+c(p.a)
1+c(p,a)’

A _Ph o |-
c(p,a):eX[{(D (l 61 0() y], y,0,€ are constants from

O the values of M, were less than
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(1.1), () is the cumulative distribution function of standiaror-
mal distribution,
O the values of V were less thah™(a), i.e. a -th quantile of stan-

dard normal distribution.
Next, the case of two groups of data was consigddéoedvhich 10,000 data
sets were generated according to the followingdirmodel:

X =AB+E, 2.1)

. . 1o, Oy ] . |
where X is a nx p matrix of the dataA = 0. 1 is a Nx2 matrix,
n2 1 n2

n,+n,=n, B’ :[Op,lp] , E~N(0,I ,0X), 1, andO, are the vectors of
k ones and zeros, respectively,X is a px p covariance matrix] , is the
identity matrix andL] denotes the Kronecker product of the matricessTtu
observations had\I(Op,Z) distribution andn, observations had\l(lp,)l)

distribution. As the distributions of all test ssats do not depend on the co-
variance matrix, theX =1 was taken in simulation. The type | errors for

residuals[l —A(A'A)_lA’] X were evaluated in the same way as in the case

of the samples. Table 1 presents the results oithelation, both for samples
and residuals.

Firstly let us notice that there are no greataddhces between type | errors
for residuals in the cases of equal and unequabetsrof observations. Statis-
tic V turns out to be particularly robust in tliase. No such difference for V
is significant at a level of 0.05 (the test for tivactions was applied to con-
clude this).

Next, let us notice that in the casemf 10 the type | errors for residuals
(equal numbers of observations) are smaller thpa tyerrors for the sample.
Most of these differences are significant at |€€5. This does not pertain to
the case oh = 20.
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Table 1. Type | errors in testing multivariate normalitysignificance levett

Sample Residuals
a a
n p test 0.1 0.05 0.01 n| n 0.1 0.05 0.01
M; | 0.0969| 0.0400 0.0084 0.0833  0.0381  0.0057
M, | 0.0922| 0.0427] 0.0089 5| 5 0.075 0.0361  0.0042
2 V | 0.1032] 0.0489 0.0082 0.0905 | 0.0427| 0.00743
M, 0.0824 | 0.0408| 0.008f
M, 2| 8| 0.0782| 0.0394] 0.008¢
10 \ 0.0901 | 0.0425| 0.007¢
M; | 0.0994| 0.0445 0.0091 0.0782  0.03%7  0.0047
M, | 0.0891| 0.0438 0.0089 5] 5 0.0755  0.0302  0.0032
3 V | 0.1047| 0.0475 0.0081 0.0893 | 0.0412] 0.0071
M, 0.0868 | 0.0427| 0.0083
M, 2| 8| 0.0800| 0.0408 0.0075%
\ 0.0908 | 0.0429| 0.007¢
M; | 0.1004| 0.0478 0.0114 0.1019  0.0508 0.0088
M, | 0.0958| 0.0480 0.0111 10| 10 0.1028  0.0499 0.009
2 V 10.1017| 0.0480 0.0108 0.1057 | 0.0480] 0.0094
M, 0.1015 | 0.0499| 0.0097
M, 5] 15| 0.1026 | 0.0491] 0.009¢
20 \ 0.1018 | 0.0516] 0.0091
M; | 0.1017| 0.0477, 0.0099 0.1006  0.0455 0.0305
M, | 0.0979| 0.0463 0.0121 10| 10 0.0971L  0.0447 0.0306
3 V | 0.1035/ 0.0487, 0.0102 0.102 0.0459| 0.0097
M, 0.1021 | 0.0484| 0.0108
M, 5] 15| 0.0995| 0.0465| 0.010¢
Vv 0.1017 | 0.0509| 0.0109

3. Power study

To compare the power of considered té4tsM, andV, 10,000 data sets of
sizesn=10, n=20 and n=40 from selectedp-variate (p=2,p=3)

distributions were generated for samples and itreat model (2.1). Powers
were determined as the fractions of samples oduweafs for which the test sta-
tistics fall into the critical areas described iacBon 2. The significance level
0.05 was only considered. The following distribngdor sample and err& in
the linear model (2.1) were taken: uniform on pkid sphere (MPIl i.e. Pearson
Type II), multivariatet distribution with 2 degrees of freedom (MPVII iRear-
son Type VII) and distribution with independent giaals of chi-square distri-
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Table 2. Powers evaluated on basis of 10,000 data setsajedeccording to the uniform

p
on thep-sphere, multivariate, and (Xg) distributions

Sample Residuals
uni- 2\pP 2\pP
n| p form | mult. b (Xs ) n; | n, | uniform | mult. $ (Xs )
M; | 0.060| 0.385 0.308 0.041 0.264 0.1715
M, | 0.045| 0.381 0.276 5|5 0.033 0.264 0.162
2 \% 0.073| 0.349 0.296 0.050 0.226 0.167
M1 0.041 0.308 0.192
M2 2| 8 0.031 0.305 0.182
10 vV 0.050 0.274 0.184
M1 | 0.049| 0.439 0.279 0.038 0.284 0.145
M2 | 0.035| 0.435 0.252 5|5 0.028 0.295 0.130
3 \% 0.066| 0.379 0.253 0.049 0.226 0.143
M1 0.040 0.353 0.185
M2 2| 8 0.029 0.355 0.173
\% 0.052 0.295 0.167
M1 | 0.115| 0.682 0.654 0.084 0.63p 0.557
M2 | 0.086| 0.675 0.615 10| 10 0.066 0.634 0.517
2 vV 0.134| 0.642 0.638 0.099 0.592 0.539
M1 0.085 0.635 0.558
M2 5 | 15| 0.065 0.627 0.527
20 vV 0,100 0,597 0,541
M1 | 0,081| 0,759 0,633 0,064 0,706 0,515
M2 | 0,048| 0,751 0,576 10 | 10 0,042 0,698 0,474
3 vV 0,106| 0,701 0,578 0,081 0,640 0,478
M1 0,067 0,717 0,531
M2 5 | 15| 0,045 0,705 0,489
\% 0,090 0,650 0,488
M1 | 0,245| 0,901 0,871 0,180 0,88R 0,844
M2 | 0,193| 0,896 0,852 20| 20 0,142 0,878 0,821
2 vV 0,268| 0,879 0,857 0,200 0,857 0,825
M1 0.192 0.884 0.852
M2 5 | 35| 0.150 0.877 0.829
20 vV 0.213 0.857 0.836
M1 | 0.113| 0.948 0.855 0.092 0.936 0.826
M2 | 0.081| 0.941 0.828 20| 20 0.06]] 0.93D 0.790
3 vV 0.135| 0.923 0.815 0.108 0.902 0.782
M1 0.096 0.938 0.829
M2 5 | 35| 0.066 0.933 0.800
vV 0.114 0.905 0.787
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bution with three degrees of freedom. Thus faethillight-tailed and skewed
distributions were considered. MPVII and MPII distitions were generated
according to Johnson (1987). The results are givdrable 2 and we may con-
clude as follows.

1. For multivariatestand (xg)" distributionsM, has the highest power in

most cases whereas the test based on the statistithe best for uniform on
the p-th sphere distribution. It is worth noting thak t@sts rather seldom detect
nonnormality when the uniform distribution is true.

2 All tests are less powerful when applied to reaid than in the case of
the sample.

3 If we consider the influence @fon the power it may be said that the
power of all tests is higher f@=2 than forp=3, both for sample and residuals

for uniform and()(g)p . The contrary conclusion may be drawn for multiar

t, distribution.
4 If we consider the influence of equal and uneaquahbers of observa-
tions in the groups on the power of the tests applo residuals then we can

note that for()(é)p distribution the powers are higher when the groangsun-

equal. The same is true forwhen n =10 and n = 20(only for p =3) and
for the uniform distribution when=40.
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BADANIA SYMULACYJNE
WIELOWYMIAROWEJ NORMALNOSCI
OPARTE NA STATYSTYCE SHAPIRO-WILKA

Streszczenie

W pracy rozwaa sk trzy testy wielowymiarowej normaldoi oparte na statystyce Shapiro-
Wilka dla sktadowych gtéwnych macierzy kowariandjwa z nich zaproponowali Srivastava i
Hui (1987), a trzeci Hanusz i Taraska (2008b). Oceniaesbiedy | rodzaju dla tych testéw na
poziomach istotnéi 0,05; 0,1 i 0,01 zaréwno w przypadku proby lospyak i reszt z modelu
liniowego dla dwdch grup danych. Podandakze moce tych testéw przy wybranych rozktadach
alternatywnych w przypadku préby i reszt.

Stowa kluczowe testy wielowymiarowej normalioi, statystyka Shapiro-Wilka, &d | rodzaju,
moc testu, testy Srivastavy i Hui.
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