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Summary

The paper shows a unified method of estimating rpaters of regression with replicated
observations, taking into account assumptions tif lequal and different variances. In a specific
range of values of the independent variable, patyiabregression was considered because of its
frequent use in the life sciences. For the consetdlemultivariate approach we present an
exemplary procedure (SAS 9.1), which allows onmée appropriate calculations.
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1. Introduction

Knowledge derived from the analysis and interpretatof results of
experiments in which measurements are repeateda magjor contribution to
the development of many scientific disciplines. €agions drawn of these
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experiments are characterized by objectivity. Répes, which are important
in these studies may be of two kinds. In some exmgits measurements are
taken over the same experimental units. In thie dhs values of repeated
measures, are usually correlated. In other stuthesdata are collected as an
observations of the dependent (response) variabliaé same fixed value of the
independent (predictor) variable at the differenitss Replications obtained in
this way are generally independent results (Tas&si, 2001). Using them, the
researcher can look for the regression curve desgrihe relationship between
the measured features. Regression coefficientssarally estimated by the least
squares method which is based on the averages oéplicated observations of
response variable. However, this method of parametstimation requires
fulfillment of assumptions of equal error variandes all observations. When
the above assumption is not fulfiled we have arasgion with replicated
observations at different variances. In this cése Jeast squares method should
not be used. Due to the fact that there has nat bedar given a uniform
method of determining the functional relationshiptvieen the measured
features regardless of whether the assumption ridin@e homogeneity occurs
or not, this paper tries to analyze various aspefcthe growth curves method
in order to adapt it to analyze such data. Théshafsthe considerations is the
fact that from the perspective of statistical asmlyreplicated observations can
be treated as a special case of repeated meastisemen

2. Replicated observations in relation to repeatetheasures
2.1 Replicated observations

Regression with replicated observations occurs whenarchers take into
account replications, that is independent obsematiof dependent variable
for the same value of the predictor variakléKoronacki, Mielniczuk 2001;
Wesotowska—Janczarek, mRafiska 2001). Then, we are taking into account

p fixed values X, X,,...,X, for the independent variable Subsequently we

measure the characteristiy for k, independent units in each poi X

(i=1...p).
The regression equation defines the relationshipvdEny andx. It takes
the formy; = f(x)+¢;, wherei =1,...,p; j =1,...k;. Itis assumed that the

vector ¢ of random errors has a normal distribution witpeoted valu¢O and

p
variancea?l ,, which can be writtelg ~ Nn(O,ozl ,) wheren=>"k; is the
i=1
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total number of observations. In general, the wvex’ =[x1,...,xp] is being
considered andp independentk,— dimensional vectorsy; :[yil,...,yiki].
Elements of vectorsy, are independent random variables with the same

variance 0”, i.e. £, =0°l, (Draper, Smith 1998; Neter et al. 1996). The
regression equation of on x can then be determined taking into account

kI
replications averagey, 232 y; for each ofx instead of individua y;
i j=L
(j =:L...,ki) and the subsequent values Xt Such a procedure requires the

equality of variances for all observations.
However, in practice, this assumption may not abMag met, and then the
covariance matrix takes the form

x, =o'l (i=1..p). (2.1.1)

Yi !

2.2 Repeated measures

Many life sciences experiments are done in accaelawith the
methodology of repeated measurements. In thesdesfuthe researcher is
usually interested in the differences within thensaexperimental units. Then
the results, which he analyzes are strongly cdad)decause they are obtained
by measurements made repeatedly on the same erpésinunits. Frequently,
measurements that are closer in time, are moragraorrelated than those
more distant from one another.

Various methods of data analyses with repeated unesisare known
(Crowder et al. 1991). In this paper we focus djedly on the method of
growth curves (Kshirsagar et al. 1995, PotthoffletL964). As it turns out, this
multivariate approach allows to describe and amalyhe dynamics of
phenomena, which are changing over time and malyeliful in determining
the regression function — especially in the cadeetéroscedasticity.
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3. Considered models — principles and indications

3.1 The growth curves model

The general multivariate linear growth curves md@ealksalary et al. 1978;
Kshirsagar, Smith 1995; Potthoff, Roy 1964; von &04995; Wesotowska—
Janczarek 1993) was given as

Y =ABT+E

Y — the observation matrixNxp, N=ak k; =..=kp =k), A is the

(N xa) known design matrix (without a column of one$),is the known

(qx p) matrix, describing internal structure of obsemati(Vandermonde
matrix)

1 1 1

ol b b t,
q-1 q.—l q-1
1 t2 t

where t;,t,,...,t, mean time pointsB is (ax q) matrix of fixed unknown

P
coefficients of the assessed polynomial curves,Eiglthe (N X p) matrix of
random errors. For the model (3.1.1) is assumet tttea observation matrix
Y ~ Ny p(E(Y), Ey), where the expected value has a form

E(Y)=ABT,
and
X, =x0l, =Var(vec). (3.1.1)
pp

The covariance matrix (3.1.1) indicates that thevsraof matrix Y are
independent
p—dimensional random vectors with common covariamoatrix X >0.
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Observations for the different experimental unies ancorrelated. Furthermore,
N - r(A) >p, Wherer(A) is rank of the matriXA. The estimator of matriB
(Potthoff et al. 1964) is of the form

B=(AAAYSIT(TST)* (3.1.2)
where
S= Y'[I N A(A'A)‘lA'] Y

if the matrixA is full rank.

3.2 A polynomial regression with replications

It is well known, that regression with replicatetbservations presents
relation between independent varialdeand the mean values of dependent
variable y. This is not a rule, that this relationship de§ine straight line.

Sometimes, scatter plot for the values of variab(ecsy) shows some

"curvature" (Aczel , 2000). In this case, the gfndiline does not fit to the data.
A much better solution is then fit to the data &pomial of degree higher than
one. General form of polynomial regression modehwéplicated observations
with one explanatory variableis given by

Yy =5+ Bx+ ---"'IBq—qu_l tE, (3.2.1)

where replications averag§ is the response variable3;, 8,,....3,, are

parameters£ is a random error anq—1 is a degree of polynomial. The
model (3.2.1) can be written in a matrix form

y=Xp+e,
where y =(§/1,...,37p)' is p—dimensional vector of replications averages of

K
response variable such that y; = ; z Yii (i =1..., p) ,
{ J:]-
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1 %X .. X

X=|... ... .. .| isadesign matribpxqg (r(X)=q), whose first
1 X, .. xi*

column consists of ones, while the others are #lees of the independent

variable in an appropriate power from 1 -1, B:(,BO,...,,Bq_l) is
g—dimensional vector of regression coefficients as=(£1,...,£p) IS

p—dimensional vector of random errors such ¢ ~ N IO(O,azl pj.

By ﬁ we define least squares estimator of vector alesesgon coefficient
B=(X'X)"Xy, (3.2.2)

where X' is a transpose of a maiX . The application of the formula (3.2.2)
requires that the assumption of equal error vadartias been fulfilled for all

observations. Thus, for all vectoys a covariance matrix should be

. =0’,. (3.2.3)

Yi

When the assumption (3.2.3) is not fulfilled, wevéaa polynomial
regression with replicated observations at differgariances. In such a
situation, to determine estimators of model paramef3.2.1) we propose to use
Potthoff-Roy’s method which takes into account abiservations of the

dependent variablg, (i =1...,p; ] :L...,k) instead of averages.

In further considerations we assume that functierisch are fitting to the
experimental data, are higher degree polynomq>2) and we assume the

same number of independent observations (replicgitidor each pointX;
(ki =k foralli =1,...,p).
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4. Estimation of parameters

4.1 Homogeneity of variances

We suppose that condition (3.2.3) is fulfiled nowhen the estimator
(3.2.2) may be obtained by the least squares method
Let's considerq—1 degree (i.e.q>2) regression model (3.2.1) with

replications and let's assume that the estlmatbpsarameters in this model are
respecnvely,é’0 b, ,81 b,.. ,8 _, =b,_,. To determine the evaluations of
these parameters we need to fi(1q—1)—degree function which minimize

p
Q= Z(Vi -b, —b,x —b,x’ —...—bq_lxiq_l)2 for a given sample, where

k
)/ =EZ y; represents the mean of the replicated observatbrihie X;
i=1

(i :L...,p). If we solve the appropriate system of normal &igua we will
obtain estimators of regression coefficients w@plications in the form:

% = de1M( n 2 Y M) X +Mqlzy|xq_l)

b, = ( MY ¥ + My, ¥ix +...+Mq227ixﬁ‘1) (4.1.1)

deiM

1 \7 7 — —
041 = o My X9+ My T 9%+t Mg, S 9x07%),

where detM means the determinant of the matkix MIJ ,1"=1...,q are
elements of the adjoint matrix of mati and
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P DX .. x
M = in Z‘xf Z‘xﬁ

Doxt Y xt L Y )

Each of sum relates to the indax=1,...,p, but for improving the
readability of writing these numbers were omitted.

4.2 Heteroscedasticity

In practice, it happens that the method of leastisgs can not be used to
determine polynomial regression equation with cgtiéd observations. The
reason may be a departufeom the assumptions connected with the
homogeneity of variances, the so—called heterostiedy. Statistical literature
(e.g. Krysicki et al. 1997) proposes several téstserify the hypothesis of

equality of variances of observation vecty,s(i =1,...,p)
H,:02=0%=...0%. (4.2.1)

If we reject this hypothesis, the covariance masiof vectorsy, are not

the same and have the form (2.1.1), whkre=k for all i =1,...,p. In this

case, formula (4.1.1) can not be used to estinmgarameters of polynomial
regression. Authors of some papers (Horn et al5;18@éter et al. 1996; Rao and
Subrahmaniam 1971; Wayne et al. 1978) suggestirestdutions for this
situation. One of them is the weighted least squarethod (WLS). Estimators
of regression coefficients are then determined by

O
B, = (X" WX)*Xx wy, (4.2.2)

while W defineweight matrix
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w, O 0
0O w, .. O

W= . . : (4.2.3)
0O O w

and is chosen so that observations with low vagahave a large part in
determining the regression equation, while thosehwa large variance
respectively less (Draper, Smith 1998; Neter e1996)).

In our work, when the assumption of equal variarafesbservation vectors
is not fulfilled, we propose that a polynomial reggion equation is determined
by growth curves method. We will take into accoartiomogeneous group of
experimental units and a diagonal covariance manim. The availability of
replicated observations allows one estimate variances according to the
formula

&2 =

1 1
—vyill,——E i 4.2.4
i k_lyl( KT kkjyl ( )
whereE,, is a matrix olk xk dimension consisting of all ones.

According to the assumptions of the growth curvesieh we assume that
the observation matri:\k( =[y;] (i=1..k, i=1..,p) has independent
p

rows with identical covariance matrices

o 0 .. O
0 o’ .
= =diag(o?,03,...,0%
~ o ' | 9(01 0, 0p)
0 .. 0 o2

p

and expected valt E(Y) =1,B'T, while 1, means the k dimensional vector of

ones. In order to estimate the parameters of thdemn¢3.2.1), when the
condition (3.2.3) is not satisfied, we denote:
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1 1 ... 1
X, X, o X,

B’:[Boaﬁl,---,p’q_l], T= X12 X22 X'2) ,
xoxst L xg‘l

r =daglz, z,...2,). 7=

_N||-\

Finally, having taken into account the above intices and (3.1.2), the

searched estimator of vector parameters in caseytimthesis (4.2.1) is rejected
has a form

A 1 _
BO:M(Kllzziyi-'-Klez y|+ +quZZqu )

- 1 _ _ .
B, :de—1K(K12zZi Yi * Kzzzzixiyi Tt quzzixiq lYi) (4.2.5)

~ 1
Bas = delK (lqzz|y|+K2qZZIXyl+' +quzzqu )

where

Zzi Zzixi ZZiXiq_l
oroor| Sax Tax o Tax

Z:Zixiq_l ZZiXiq Zzixiz(q‘l)

and Ki,j., i',j' =1,...,q are elements of the adjoint matrix of matix
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It is worth noting that when o?=03=..=02=0> ie.
=z,=..=2 =1 and z="L as well as K=
L=5=.% p_oz Zi_cz _0

M and

detK = izdetM , from the formulas (4.2.5) we obtain (4.1.1). Timsans that
o

the estimators of parameters obtained by PotthaffsRmethod coincide with
the estimators obtained by least squares methodedwer, if in the formula

(4.2.3) we will take the inverse criatriancesci2 equal toz, as a weightw,,

then the estimator (4.2.2) obtained by the weighesdst squares method is
identical to (4.2.5) which follows from the growthrves method.

5. Application example

In an experiment conducted at the Department ofcAiural Machinery,
University of Life Sciences in Lublin determinedatiye in sugar content in
corn grain, depending on harvest date and variety ¢R&anska—Boczula,
2010). The research material consisted of sweet €ars of Boston, Bonus, and
Jubilee varieties (Szymanek et al. 2005). The weare collected by hand in a
random way from different places in plantationsrfomes (p = 4) every two
days. The characterization of the test material determined on the basis of
100 ears. The percentage of sugar content waswatat on samples weighing
200 g in 6 replicationgk = 6), which gives us 24n = 24) observation pairs
for both features of each group (i.e. variety). &#jns in subsequent harvest
dates were made on different experimental units thedata are ofeplicated
observations character.The aim of tlsisidy is to determine the functional
relationship between sugar content and the datarvkst for each variety.

5.1 Regression with replications at equal variances

Rézanska—Boczula (2010) shows that the observationsiraatafor the
different varieties of corn do not lie along a g line. For this reason, we
decided that the model (3.2.1) is appropriate tterd@ne the functional
relationship between sugar content and harvestfdateach group as well as
that the second degree polynom{als- 3) will be the appropriate functions. As
it has already been mentioned, leemula (3.2.2) allows us to estimate the
coefficients of regression equations when at sulE#gpoints of measurement
X; covariance matrices of; observation vectors are the same. Hartley's test
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(e.g. Krysicki et al. 1997), which verifies the logpesis of variances equality in
subsequent dates of corn harvesting, does nott tijeaull hypothesis (4.2.1)
only for Jubilee variety. Hence, the regressionatign estimated by the least
squares method and the coefficient of determinatmnthis variety are as
follows

Jubilee y = 0.048x* - 0.469x + 6.004, R* =0.9033

Moreover, theprobability value p <0.0001 obtained as a result of

variance analysis teaid residuals plot show that this model is coryefitied
to the data.

5.2 Regression with replications at different variaces

For the other studied corn varieties (Bonus, Bgstitrappeared that the
assumption of homogeneity of variance of the olsem vectors is not
fulfilled. In this situation, we propose to determmiestimators of regression
coefficients by the weighted least squares methrothe multivariable growth

curves method. In the first case we took the irved§ variancesG?

(i=1...4) as weights. For each groufji2 were determined according to
(4.2.4). Thus we have received for

Bonus varietyy = -0.046x* - 0.108x + 6.235, R’ =0.9656,
and
Boston varietyy = —003x* - 0.257x+ 6,591, R* = 0.9900.
In the second case we got the results using proeedoat have been
implemented for this goal in editor of the SAS %fdogram. Vectors of

parameters received by the growth curves methatbfdmg to (4.2.5)) are as
follows:

623 6.602
B gonus =| —0.102], Bgosion=| —0.266|.
—-0.047 -0.029

The method of growth curves has the advantage ithallows to get
estimation of regression coefficients simultanepusk all treatment groups.
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For this purpose we determine an estimator of tagixB by (3.1.2), assuming
S=diag(6?,63,62,6%), where eachg? (i =1,...4) is calculated on the basis
of observations for all varieties in tleth time. It is worth noting that we use

full observation matrixy (not averages) in the calculations. To deternBie
using SAS 9.1, you can use the following procedure

prociml;
y1={ observations fromhte first date of harvesr all groups };
y2={ observations fromite second date of harvdst all groups };
y3={ observations fromite third date of harvesir all groups };
y4={ observations fromhte fourth date of harvegir all groups };
Y=y1|ly2|ly3|ly4;
war={0.1020.01270.0530.013;
SIGMA=diag(war);
t1={1, 1, 1};
t2={1, 2, 4};
t3={1, 3, 9};
t4={1, 4, 16};
T=t1||t2||t3||t4;
al1=36,1,1)/13(6,1,0)//3(6,1,0);
a2=J6,1,0)//3(6,1,1)//3(6,1,0);
a3=J6,1,0)//3(6,1,0)//3(6,1,1);
A=allla2||a3;
B=inv(A *A)*A*Y*inv(SIGMA)*T *inv(T*inv(SIGMA)*T"  );
print B;
run;

The result of the above procedure is the followiragrix

664 -028 -003
B=|618 -0.103 - 007
600 - 047  0.049

The first row of the matrix3 corresponds to the regression coefficients of
Boston variety, the second row is for Bonus varigtyl the third row is for

Jubilee variety. One can note that the last rothefmatrix B is identical with
the values of the parameters obtained by the $epstres method previously (as
shown in section 4.2). What's more, the mean détetion coefficient
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(Wesotowska—Janczarek,2000), that we have gotliféhese curves (estimated
by Pothoff-Roy’s method) was equigl® = 0.995.

6. Conclusions

1) Growth curves method, that was used in this pap@npore general than
other methods of analysis of replicated observatibecause:

a) itis a multivariate method, including situatiorfsboth: equal and
different variances.

b) it allows for simultaneous estimation of paramefersdifferent
groups of observations (e.g. for different varigtie

2) As the result of experimental data analysis we Isa@eed what follows:

a) High determination coefficient for estimated pafdabcegression
equation for Jubilee variety. The replicated obagons of this
variety had equal variances in subsequent harvasd This
allowed to use both least squares method or PetRoff's
method.

b) For the Boston and the Bonus varieties, where bstedasticity
was observed, multivariate growth curves method wasd.
Results are similar to the weighted least squatbaode

3) The mean determination coefficient that we have fgotall curves
estimated by Pothoff—-Roy’s method proves, thatdlmsves have good
fit to the experimental data. We can also confinat date of harvest is a
main factor deciding about the sugar content im gpain.
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