Colloquium Biometricum 42 2012, 67–75

ON SOME D-OPTIMAL CHEMICAL BALANCE WEIGHING DESIGN WITH $n \equiv 2 \pmod{4}$

Krystyna Katulska, Łukasz Smaga

Faculty of Mathematics and Computer Science Adam Mickiewicz University of Poznań Umultowska 87, 61-614 Poznań, Poland e-mail: krakat@amu.edu.pl; ls@amu.edu.pl

Summary

In this paper, we consider the chemical balance weighing designs for estimation of individual unknown weights of three objects using D-optimality criterion. We assume that the error components create a first-order autoregressive process AR(1). Then, the covariance matrix of random errors has known form, which does not have to be identity matrix and depends on known parameter ρ . In this paper, we prove D-optimality of some design from Bora-Senta and Moyssiadis (1999), if $n \equiv 2 \pmod{4}$, in the whole class of designs for three objects and some $\rho \leq 0$. Under these assumptions, we present the necessary and sufficient conditions such that the weighing design for three objects is D-optimal. These conditions can be used to construct D-optimal designs.

Keywords and phrases: D-optimal chemical balance weighing design, first-order autoregressive process AR(1)

Classification AMS 2010: 62K05, 05B20

1. Introduction

In the paper we consider the chemical balance, where each object can be placed on one of two pans (left and right). A reading represents the total weight of the objects on the pans. We would like to choose a chemical balance weighing design that is optimal with respect to D-optimality criterion, which we define below.

At the beginning, we introduce a model for chemical balance weighing design for three objects. We estimate the true unknown weights $\omega_1, \omega_2, \omega_3$ of three objects employing *n* measuring operations using a chemical balance. Let $y_1, y_2, ..., y_n$ denote the observations in these *n* operations, respectively. We assume that the observations follow the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\omega} + \boldsymbol{\varepsilon}$, where $\mathbf{y} = [y_1, y_2, ..., y_n]'$ is an $n \times 1$ vector of observations, $\boldsymbol{\omega} = [\omega_1, \omega_2, \omega_3]'$ is the vector of unknown weights of objects, the $n \times 3$ matrix $\mathbf{X} = [x_{ij}]$ is called the design matrix, the vector $\boldsymbol{\varepsilon} = [\varepsilon_1, \varepsilon_2, ..., \varepsilon_n]'$ is the vector of error components. In the chemical balance weighing design, we suppose that $x_{ij} = -1$ ($x_{ij} = 1$) if the *j*th object is placed on the left (right) pan during the *i*th weighing operation. We consider the case when the random errors form an AR(1) process which implies that $E(\boldsymbol{\varepsilon}) = [0, 0, ..., 0]'$ is an $n \times 1$ nil vector and $Var(\boldsymbol{\varepsilon}) = 1/(1 - \rho^2)\mathbf{S}$, where $\mathbf{S} = (\rho^{|r-d|})_{r,d=1}^n$ and $-1 < \rho < 1$. We identify the design with its matrix \mathbf{X} .

The D-optimal chemical balance weighing design maximizes the determinant of the information matrix $\mathbf{X}'\mathbf{S}^{-1}\mathbf{X}$. More precisely, the design $\widetilde{\mathbf{X}}$ is D-optimal in the class of the designs $C \subseteq M_{n\times 3}(\pm 1)$, where the set $M_{n\times p}(\pm 1)$ consists of all matrices with n rows, p columns and elements 1 or -1, if det $(\widetilde{\mathbf{X}}'\mathbf{S}^{-1}\widetilde{\mathbf{X}}) = \max{\det(\mathbf{X}'\mathbf{S}^{-1}\mathbf{X}) : \mathbf{X} \in C}$.

The case, when the matrix **S** is the identity matrix ($\rho = 0$), is well known and the D-optimal designs are considered in many papers (see, e.g. Galil and Kiefer (1980), or Jacroux et al. (1983)). For $\rho \neq 0$, Bora-Senta and Moyssiadis (1999) gave some conjectures (based on several exhaustive searches) about Doptimal chemical balance weighing designs with matrices $\mathbf{X} = [\mathbf{1}_n \mid \mathbf{x} \mid \mathbf{y}] \in M_{n \times 3}(\pm 1)$, where $\mathbf{1}_n$ is the vector of *n* ones. These conjectures were proved in Li and Yang (2005) and Yeh and Lo Huang (2005) $n \equiv 0 \pmod{4}, \rho \in (-1,1)$ and $n \equiv 2 \pmod{4}$, $\rho > 0$. For for some $-1 < \rho \le 0$ and $n \equiv 0 \pmod{4}$, some construction of D-optimal design in the class of designs such that each column of the design matrix \mathbf{X} contains at least one 1 and one -1 were considered in Katulska and Smaga (2010) and Katulska and Smaga (accepted).

Some results about D-optimal designs in the classes of designs with matrices $\mathbf{X} = [\mathbf{x} | \mathbf{y} | \mathbf{z}] \in M_{n \times 3}(\pm 1)$ and $\mathbf{X} = [\mathbf{1}_n | \mathbf{x} | \mathbf{y} | \mathbf{z}] \in M_{n \times 4}(\pm 1)$ for some $\rho \ge 0$ are given in Katulska and Smaga (2012) and Katulska and Smaga (2011), respectively.

2. D-optimal chemical balance weighing designs

In this section, we present the main results but first we give some definitions and supporting results.

For any vector $\mathbf{x} = [x_1, x_2, ..., x_n] \in M_{n \times 1}(\pm 1)$, we define the numbers

$$cs(\mathbf{x}) = \#\{i : x_i = -x_{i+1}, 1 \le i \le n-1\},\$$

 $fcs(\mathbf{x}) = \min\{i : x_i = -x_{i+1}, 1 \le i \le n-1\},\$

$$scs(\mathbf{x}) = \min\{i : i > fcs(\mathbf{x}), x_i = -x_{i+1}, 1 \le i \le n-1\}.$$

We obtain the following lemma directly from properties of determinants (see Horn and Johnson, 1985).

Lemma 2.1. If $\mathbf{X} \in M_{n \times p}(\pm 1)$ and \mathbf{G} is the $n \times n$ real matrix, then the determinant of the matrix $\mathbf{X}'\mathbf{G}\mathbf{X}$ does not change if we interchange two columns of the matrix \mathbf{X} or we multiply any column of this matrix by -1.

Below, we remind well known inequality.

Lemma 2.2. (Fischer's inequality). If $\mathbf{P} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{C}^T & \mathbf{D} \end{bmatrix}$ is a positive definite matrix that is partitioned so that \mathbf{B} and \mathbf{D} are square and nonempty, then $\det(\mathbf{P}) \le \det(\mathbf{B}) \det(\mathbf{D})$ and the equality holds if and only if $\mathbf{C} = \mathbf{0}$.

Lemma 2.3. Suppose that $n \equiv 2 \pmod{4}$ and $\lambda = 0, 1, 2, \dots, n-1$. If $\Delta = (n-2)(1-\rho)^2 + 2(1-\rho)$, $\rho \neq 0$ and $\mathbf{x} \in M_{n \times 1}(\pm 1)$, then $cs(\mathbf{x}) = \lambda$ if and only if $\mathbf{x}' \mathbf{A} \mathbf{x} = \Delta + 4\lambda\rho$, where

$$\mathbf{A} = \begin{bmatrix} 1 & -\rho & 0 & \cdots & 0 & 0 \\ -\rho & 1+\rho^2 & -\rho & \cdots & 0 & 0 \\ 0 & -\rho & 1+\rho^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1+\rho^2 & -\rho \\ 0 & 0 & 0 & \cdots & -\rho & 1 \end{bmatrix}.$$
 (2.1)

Proof. The thesis follows from equality

x' **Ax** = (*n*−2)(1+ρ²)+2−2ρ(*x*₁*x*₂ + *x*₂*x*₃ +···+ *x*_{*n*−1}*x*_{*n*}). ■

The next lemma follows from proofs in Yeh and Lo Huang (2005) and some direct calculations.

Lemma 2.4. Let

 $\mathbf{x} = [x_1, x_2, ..., x_n]', \mathbf{y} = [y_1, y_2, ..., y_n]' \in M_{n \times 1}(\pm 1), n \equiv 2 \pmod{4}$ and the matrix **A** is defined by (2.1). (a) If $cs(\mathbf{x}) = cs(\mathbf{y}) = 1$, $fcs(\mathbf{x}) > fcs(\mathbf{y})$, then

(a) If $cs(\mathbf{x}) = cs(\mathbf{y}) = 1$, $fcs(\mathbf{x}) > fcs(\mathbf{y})$, then

$$\mathbf{x}'\mathbf{A}\mathbf{y} = \begin{cases} (n-2fcs(\mathbf{x})+2fcs(\mathbf{y})-2)(1-\rho)^2+2(1-\rho) & \text{if } x_1 = y_1 \\ -((n-2fcs(\mathbf{x})+2fcs(\mathbf{y})-2)(1-\rho)^2+2(1-\rho)) & \text{if } x_1 \neq y_1 \end{cases}.$$

(b) If cs(x) = 0, cs(y) = 2, then

$$\mathbf{x}'\mathbf{A}\mathbf{y} = \begin{cases} (n+2fcs(\mathbf{y})-2scs(\mathbf{y})-2)(1-\rho)^2 + 2(1-\rho) & \text{if } x_1 = y_1 \\ -((n+2fcs(\mathbf{y})-2scs(\mathbf{y})-2)(1-\rho)^2 + 2(1-\rho)) & \text{if } x_1 \neq y_1 \end{cases}.$$

(c) If cs(x) = 0, cs(y) = 1, then

$$\mathbf{x}' \mathbf{A} \mathbf{y} = \begin{cases} (2 f c s(\mathbf{y}) - n)(1 - \rho)^2 & \text{if } x_1 = y_1 \\ -(2 f c s(\mathbf{y}) - n)(1 - \rho)^2 & \text{if } x_1 \neq y_1 \end{cases}.$$

(d) If $cs(\mathbf{x}) = 1$, $fcs(\mathbf{x}) = n/2$, $cs(\mathbf{y}) = 2$, $b = fcs(\mathbf{y})$, $c = scs(\mathbf{y})$, then

$$\mathbf{x}'\mathbf{A}\mathbf{y} = \begin{cases} 2(b+c-n)(1-\rho)^2 & \text{if } x_1 = y_1, b < n/2, c > n/2 \\ -2(b+c-n)(1-\rho)^2 & \text{if } x_1 \neq y_1, b < n/2, c > n/2 \\ (n-4)(1-\rho)^2 + 2(1+\rho^2) & \text{if } (x_1 \neq y_1, b = 1, c = n/2) \text{ or} \\ (x_1 = y_1, b = n/2, c = n-1) & \text{if } (x_1 = y_1, b = 1, c = n/2) \text{ or} \\ (x_1 \neq y_1, b = n/2, c = n-1) & \text{if } (x_1 \neq y_1, b = n/2, c = n-1) \end{cases}$$

Now, we formulate new theorems concerning D-optimal chemical balance weighing designs under the assumption that the random errors form a process AR(1). First, we prove that some design is D-optimal weighing design for three objects and some $\rho \le 0$.

Theorem 2.5. Let $n \equiv 2 \pmod{4}$, $n \neq 2$ and $\rho \in (-1, -1/(n-2)] \cup \{0\}$ if n = 6, 10, ..., 22, and $\rho \in (-4/(n-8), -1/(n-2)] \cup \{0\}$ if $n \ge 26$. Then the design with the matrix

$$\hat{\mathbf{X}} = \begin{bmatrix} 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 1 \\ 1 & 1 & -1_2 \\ \vdots & \vdots & \vdots \\ 1 & 1 & -1_2 \\ \vdots & \vdots & \vdots \\ 1 & 1 & -1_2 \\ \vdots & \vdots & \vdots \\ 1 & -1 & -1 \\ \vdots & \vdots & \vdots \\ 1 & -1 & -1 \\ 1 & -1 & 1_3 \\ \vdots & \vdots & \vdots \\ 1 & -1 & 1 \end{bmatrix}$$
(2.2)

where elements with indices 1, 2 and 3 are in positions (n/2+1, 2), ((n-2)/4+2, 3), (3(n-2)/4+2, 3), respectively, is D-optimal chemical balance weighing design for three objects.

Proof. (Sketch) The inverse of the matrix **S** is equal to $\mathbf{S}^{-1} = 1/(1-\rho^2)\mathbf{A}$, where the matrix **A** is given by (2.1). The matrix **A** is positive definite. From definition of D-optimal design and the inverse of the matrix **S** we obtain the D-optimal design in the class of designs $C \subseteq M_{n \times p}(\pm 1)$ maximizes the determinant of the matrix **X'AX** among all $\mathbf{X} \in C$.

From Lemmas 2.3 and 2.4 for the matrix $\hat{\mathbf{X}}$ of the form (2.2), we have

$$\det(\hat{\mathbf{X}}'\mathbf{A}\hat{\mathbf{X}}) = \det\begin{bmatrix}\Delta & 0 & 2(1-\rho)\\0 & \Delta+4\rho & 0\\2(1-\rho) & 0 & \Delta+8\rho\end{bmatrix} = (\Delta+4\rho)[\Delta(\Delta+8\rho)-4(1-\rho)^2].$$

When $\rho = 0$, then the matrix **A** is the identity matrix and

$$\det(\hat{\mathbf{X}}'\mathbf{A}\hat{\mathbf{X}}) = \det(\hat{\mathbf{X}}'\hat{\mathbf{X}}) = \det\begin{bmatrix}n & 0 & 2\\0 & n & 0\\2 & 0 & n\end{bmatrix} = n^3 - 4n.$$

Hence $\hat{\mathbf{X}}$ is D-optimal from Jacroux et al. (1983). From now on, we assume that $\rho \neq 0$. It is easy to see that the matrix $\mathbf{X'AX}$ is positive definite. By Lemma 2.1, we can suppose $x_1 = y_1 = z_1 = 1$ and consider only the designs with matrices $\mathbf{X} = [\mathbf{x} | \mathbf{y} | \mathbf{z}] \in C_1 \cup C_2 \cup C_3$, where

$$C_{1} = \{ [\boldsymbol{\alpha} \mid \boldsymbol{\beta} \mid \boldsymbol{\gamma}] \in M_{n \times 3}(\pm 1) : cs(\boldsymbol{\alpha}) \ge 1, cs(\boldsymbol{\beta}) \ge 1, cs(\boldsymbol{\gamma}) \ge 2 \},$$

$$C_{2} = \{ [\boldsymbol{\alpha} \mid \boldsymbol{\beta} \mid \boldsymbol{\gamma}] \in M_{n \times 3}(\pm 1) : cs(\boldsymbol{\alpha}) = 0, cs(\boldsymbol{\beta}) \ge 1, cs(\boldsymbol{\gamma}) \ge 1 \},$$

$$C_{3} = \{ [\boldsymbol{\alpha} \mid \boldsymbol{\beta} \mid \boldsymbol{\gamma}] \in M_{n \times 3}(\pm 1) : cs(\boldsymbol{\alpha}) = cs(\boldsymbol{\beta}) = cs(\boldsymbol{\gamma}) = 1 \}.$$

We show that $\det(\hat{\mathbf{X}}'\mathbf{A}\hat{\mathbf{X}}) \ge \det(\mathbf{X}'\mathbf{A}\mathbf{X})$ for all $\mathbf{X} \in C_i$, i = 1, 2, 3. For example, we present the proof if $\mathbf{X} = [\mathbf{x} | \mathbf{y} | \mathbf{z}] \in C_1$. Then from Hadamard's inequality, the determinant of the matrix $\mathbf{X}'\mathbf{A}\mathbf{X}$ is less or equal to the product of the diagonal elements of this matrix, ie $\det(\mathbf{X}'\mathbf{A}\mathbf{X}) \le (\mathbf{x}'\mathbf{A}\mathbf{x})(\mathbf{y}'\mathbf{A}\mathbf{y})(\mathbf{z}'\mathbf{A}\mathbf{z})$. From Lemma 2.3, we obtain the inequalities $\mathbf{x}'\mathbf{A}\mathbf{x} \le \Delta + 4\rho$, $\mathbf{y}'\mathbf{A}\mathbf{y} \le \Delta + 4\rho$, $\mathbf{z}'\mathbf{A}\mathbf{z} \le \Delta + 8\rho$. Therefore we conclude $\det(\mathbf{X}'\mathbf{A}\mathbf{X}) \le (\Delta + 4\rho)^2 (\Delta + 8\rho)$ and $\det(\hat{\mathbf{X}}'\mathbf{A}\hat{\mathbf{X}}) - \det(\mathbf{X}'\mathbf{A}\mathbf{X}) \ge \det(\hat{\mathbf{X}}'\mathbf{A}\hat{\mathbf{X}}) - (\Delta + 4\rho)^2 (\Delta + 8\rho)$

= 4(∆+4 ρ)[-(n-2) ρ^3 + (2n-11) ρ^2 - (n-2) ρ -1] > 0, which completes the proof. ■

From the proof of Theorem 2.5, it follows that the design $\hat{\mathbf{X}}$ given by (2.2) is D-optimal in some large subclass of the class $M_{n\times 3}(\pm 1)$ for all $\rho \in (-1, -1/(n-2)] \cup \{0\}$, what we describe in the following corollary.

Corollary 2.6. If $\rho \in (-1, -1/(n-2)] \cup \{0\}$ and $n \equiv 2 \pmod{4}$, $n \neq 2$, then the design $\hat{\mathbf{X}}$ given by (2.2) is D-optimal in the class $\{[\boldsymbol{\alpha} \mid \boldsymbol{\beta} \mid \boldsymbol{\gamma}] \in M_{n\times 3}(\pm 1) : cs(\boldsymbol{\alpha}) \ge 0, cs(\boldsymbol{\beta}) \ge 1, cs(\boldsymbol{\gamma}) \ge 2 \text{ or } cs(\boldsymbol{\alpha}) = cs(\boldsymbol{\beta}) = cs(\boldsymbol{\gamma}) = 1\}.$

Now, we prove some necessary and sufficient conditions under which the design for the three objects is the D-optimal.

Theorem 2.7. If *n* and ρ are the same as in Theorem 2.5, $\mathbf{X}^* = [\mathbf{x}^* | \mathbf{y}^* | \mathbf{z}^*] \in M_{n \times 3}(\pm 1)$, then the design \mathbf{X}^* is D-optimal in the class of designs for three objects if and only if

$$\mathbf{X}^*' \mathbf{A} \mathbf{X}^* = \begin{bmatrix} \Delta & 0 & \pm 2(1-\rho) \\ 0 & \Delta + 4\rho & 0 \\ \pm 2(1-\rho) & 0 & \Delta + 8\rho \end{bmatrix}$$
(2.3)

exact to permuting columns of the matrix \mathbf{X}^* .

Proof. We present the proof if $\rho \neq 0$. First, we prove the sufficient condition. If the design \mathbf{X}^* satisfies the equality (2.3), then by Theorem 2.5 we obtain $\det(\mathbf{X}^* \cdot \mathbf{A}\mathbf{X}^*) = \det(\hat{\mathbf{X}} \cdot \mathbf{A}\hat{\mathbf{X}})$, so the design \mathbf{X}^* is D-optimal in $M_{n\times 3}(\pm 1)$. Now, we present the necessary condition. Assume that \mathbf{X}^* is the D-optimal design for three objects. So by Theorem 2.5, we conclude that $\det(\mathbf{X}^* \cdot \mathbf{A}\mathbf{X}^*) = \det(\hat{\mathbf{X}} \cdot \mathbf{A}\hat{\mathbf{X}}) = (\Delta + 4\rho)[\Delta(\Delta + 8\rho) - 4(1-\rho)^2]$. From the proof of Theorem 2.5, we obtain $\det(\mathbf{X}^* \cdot \mathbf{A}\mathbf{X}^*) > \det(\mathbf{X} \cdot \mathbf{A}\mathbf{X})$ for all designs $\mathbf{X} \in M_{n\times 3}(\pm 1) \setminus B$, where

$$B = \left\{ [\boldsymbol{\alpha} \mid \boldsymbol{\beta} \mid \boldsymbol{\gamma}] : cs(\boldsymbol{\alpha}) = 0, cs(\boldsymbol{\beta}) = 1, cs(\boldsymbol{\gamma}) = 2, fsc(\boldsymbol{\beta}) = \frac{n}{2}, scs(\boldsymbol{\gamma}) - fcs(\boldsymbol{\gamma}) \neq \frac{n}{2} \right\}.$$

If $\mathbf{X}^* \in B$, then from Lemma 2.3 it follows that $\mathbf{x}^* \mathbf{A} \mathbf{x}^* = \Delta, \mathbf{y}^* \mathbf{A} \mathbf{y}^* = \Delta + 4\rho$ and $\mathbf{z}^* \mathbf{A} \mathbf{z}^* = \Delta + 8\rho$. By Lemma 2.1: $\det(\mathbf{X}^* \mathbf{A} \mathbf{X}^*) = \det([\mathbf{x}^* | \mathbf{z}^* | \mathbf{y}^*] \mathbf{A} [\mathbf{x}^* | \mathbf{z}^* | \mathbf{y}^*]).$ From Fischer's inequality, we obtain the following inequality

$$\det(\mathbf{X}^* \mathbf{A}\mathbf{X}^*) \le (\Delta + 4\rho) [\Delta(\Delta + 8\rho) - (\mathbf{x}^* \mathbf{A}\mathbf{z}^*)^2].$$
(2.4)

The equality in (2.4) holds if and only if $\mathbf{x}^* \mathbf{A} \mathbf{y}^* = \mathbf{y}^* \mathbf{A} \mathbf{z}^* = 0$. Moreover, from the fact that $scs(\mathbf{z}^*) - fcs(\mathbf{z}^*) \neq n/2$ and Lemma 2.4 (b), it follows that $(\mathbf{x}^* \mathbf{A} \mathbf{z}^*)^2 \geq 4(1-\rho)^2$ and the equality holds if and only if $\mathbf{x}^* \mathbf{A} \mathbf{z}^* = \pm 2(1-\rho)$. Therefore, we obtain the following inequality

$$\det(\mathbf{X}^* \mathbf{A}\mathbf{X}^*) \le (\Delta + 4\rho)[\Delta(\Delta + 8\rho) - 4(1-\rho)^2] = \det(\hat{\mathbf{X}}^* \mathbf{A}\hat{\mathbf{X}}). \quad (2.5)$$

But as we noted at the beginning of the proof in the inequality (2.5) there must be equality. So $\mathbf{x}^* \cdot \mathbf{A} \mathbf{y}^* = \mathbf{y}^* \cdot \mathbf{A} \mathbf{z}^* = 0$, $\mathbf{x}^* \cdot \mathbf{A} \mathbf{z}^* = \pm 2(1-\rho)$ and the matrix $\mathbf{X}^* \cdot \mathbf{A} \mathbf{X}^*$ has the form (2.3).

Theorem 2.8. Let $n \equiv 2 \pmod{4}, n \neq 2$ and $\rho \in (-1, -1/(n-2)]$ if $n = 6, 10, \dots, 22$, and $\rho \in (-4/(n-8), -1/(n-2)]$ if $n \ge 26$. Then the design $\mathbf{X}^* = [\mathbf{x}^* | \mathbf{y}^* | \mathbf{z}^*] \in M_{n \times 3}(\pm 1)$ is D-optimal in the class of designs for three objects if and only if $cs(\mathbf{x}^*) = 0$, $cs(\mathbf{y}^*) = 1$, $cs(\mathbf{z}^*) = 2$ and $fcs(\mathbf{y}^*) = n/2$, $fcs(\mathbf{z}^*) = (n-2)/4 + 1$, $scs(\mathbf{z}^*) = 3(n-2)/4 + 1$ exact to permuting columns of the matrix \mathbf{X}^* .

Proof. The sufficient condition is easy to see, because from Lemmas 2.3 and 2.4, we conclude that the matrix $\mathbf{X}^* \cdot \mathbf{A} \mathbf{X}^*$ has the form (2.3) and hence by Theorem 2.7, the design \mathbf{X}^* is D-optimal design for three objects. Proof of necessary condition is as follows. Let \mathbf{X}^* be the D-optimal design for three objects. So the matrix $\mathbf{X}^* \cdot \mathbf{A} \mathbf{X}^*$ has the form (2.3) by Theorem 2.7.

 $\mathbf{x}^* \mathbf{A} \mathbf{x}^* = \Delta \Leftrightarrow cs(\mathbf{x}^*) = 0,$ From Lemma 2.3, it follows that $\mathbf{v}^* \mathbf{A} \mathbf{v}^* = \Delta + 4\rho \Leftrightarrow cs(\mathbf{v}^*) = 1$ $\mathbf{z}^* \mathbf{A} \mathbf{z}^* = \Delta + 8\rho \Leftrightarrow cs(\mathbf{z}^*) = 2.$ and Moreover, from Lemma 2.4 (c), we have $\mathbf{x}^* \cdot \mathbf{A} \mathbf{y}^* = \pm (2 f c s(\mathbf{y}^*) - n)(1 - \rho)^2 = 0$, so $f c s(\mathbf{y}^*) = n/2$. From the equality $x^* A z^* = \pm 2(1-\rho)$ Lemma 2.4 and (b), we obtain $scs(\mathbf{z}^*) - fcs(\mathbf{z}^*) = n/2 - 1$. Hence and from the fact that $\mathbf{y}^* \mathbf{A}\mathbf{z}^* = 0$ we have (by Lemma 2.4 (d)) $fcs(\mathbf{z}^*) < n/2$, $scs(\mathbf{z}^*) > n/2$ and hence $\mathbf{y}^* \cdot \mathbf{A}\mathbf{z}^* = \pm 2(fcs(\mathbf{z}^*) + scs(\mathbf{z}^*) - n)(1 - \rho)^2 = 0$ which implies $fcs(\mathbf{z}^*) + scs(\mathbf{z}^*) = n$.

Therefore $fcs(\mathbf{z}^*) = (n-2)/4+1$, $scs(\mathbf{z}^*) = 3(n-2)/4+1$. So the thesis is proved.

Using Theorems 2.7 and 2.8, D-optimal chemical balance weighing designs (other than $\hat{\mathbf{X}}$) for the three objects under the assumption that the random errors form a process AR(1) can be constructed.

References

Bora-Senta E., Moyssiadis C. (1999). An algorithm for finding exact D- and A-optimal designs with n observations and k two-level factors in the presence of autocorrelated errors. *J. Combin. Math. Combin. Comput.* 30, 149-170.

Galil Z., Kiefer J. (1980). D-optimum weighing designs. Ann. Statist. 8, 1293-1306.

- Horn R.A., Johnson C.R. (1985). Matrix Analysis. Cambridge University Press, Cambridge.
- Jacroux M., Wong C.S., Masaro J.C. (1983). On the optimality of chemical balance weighing design. *Journal of Statistical Planning and Inference* 8, 231-240.
- Katulska K., Smaga Ł. (2010). On some construction of D-optimal chemical balance weighing designs. Coll. Biom. 40, 155-164.
- Katulska K., Smaga Ł. (2011). D-optimal biased chemical balance weighing designs. Coll. Biom. 41, 143-153.
- Katulska K., Smaga Ł. (2012). D-optimal chemical balance weighing designs with autoregressive errors. *Metrika* DOI: 10.1007/s00184-012-0394-8.
- Katulska K., Smaga Ł., D-optimal chemical balance weighing designs with $n \equiv 0 \pmod{4}$ and 3 objects. *Communications in Statistics Theory and Methods* (accepted).
- Li C.H., Yang S.Y. (2005). On a conjecture in D-optimal designs with $n \equiv 0 \pmod{4}$. *Linear Algebra and its Applications* 400, 279-290.
- Yeh H.G., Lo Huang M.N. (2005). On exact D-optimal designs with 2 two-level factors and n autocorrelated observations. *Metrika* 61, 261-275.