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Summary

In this paper, we consider the chemical balancghveg designs for estimation of individual
unknown weights of objects using D-optimality cribe. We suppose that the random errors are
equally non-negative correlated and they have emaalances. The upper bound of the
determinant of the information matrix of weighingsigns is proved. Some sufficient conditions
for this upper bound to be attained are given. ddvestruction of D-optimal designs, which satisfy
this upper bound, is also presented. Some apmlitatf optimal weighing designs in
bioengineering experiment given in the literatwalso described.
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1. Introduction

Let us assume that énx1 vector of observationy =[V,, V,,..., ¥,]'
follow the linear modey = Xw +€, wherew =[w,,W,, ...,Wp]' is a vector

of unknown weights ofp objects, X =[x;] is the nx p design matrix,
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e=[e,e,,...,e,] is the vector of random errors. In the chemicdhiee
weighing designx; =1(x; =-1) if the jth object is placed on the right (left)
pan during the ith weighing operation. We assuna¢ E(€) = [0,0,...,0]" is
nx1 null vector ancVar(e) = 0°G, whereo > 0 is the known parameter and

the matrix G is the known positive definite matrix. The weighidesign is
identified with its design matrix.
Among all the weighing designs we would like to abe the best one for a

specific criterion. We consider D-optimality crien. The design X is
D-optimal in the class of the desigris LI M nxp({— 1,1}) where M nxp({— :Ll})

is the set of all nxp matrices with elementsl or -1, if
det()A('G_l)A()= ma>{det()A('G’l)A(): X O C} The matrix X'G ™X is called the
information matrix of the weighing desigX .

Many results about D-optimal weighing designs arewn in the literature
(see, for example, Galil and Kiefer 1980, Jacrouale1983) whenG is the
identity matrix, i.e. random errors are uncorralatand have equal variances.
The case where random errors form the first ordéoragressive process was
considered in Katulska and Smaga (2012, 2013)ntiang (2005), Yeh and
Lo Huang (2005). In Masaro and Wong (2008), D-optimeighing designs in
some subclasses of the class of weighing designp f@bjects assuming that

the random errors are equally correlated and theye hrequal variances are
considered.

In this paper, we present the results about D-gdtialnemical balance
weighing designs assuming that the random erroesegually non-negative
correlated and they have equal variances. Somdraotisn of the D-optimal
weighing designs is also given. At the end, we gmeghe application of optimal
weighing designs in bioengineering experiment igiwvethe literature.

2. D-optimal chemical balance weighing designs

In this section, we present some results aboutDkeptimal weighing
designs when errors are equally non-negative aig@land they have equal
variances. These assumptions imply that the cavegianatrix of errors can be

written in the fornr 6°G, where

G=91-p)I,+p1,1.], (2.1)
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g>0 and p0[0,2). The inverse matrix ofG is given by the following
formula

Gl=—t || P g 2.2)
g@-p)| " 1+(n-Dp "

The following lemma describes elements of the m&tion matrix of
weighing designs with the covariance matrix of e516°G, where the matrix
G is given by (2.1).

Lemma 2.1. Let X =[X,, X,, ..., Xp]DMnxp({‘ll}) and the matri>xG be
given by (2.1). If i, j =1, 2, ..., p, then

(X’G’lx)ij :x{G’lxj = XX,
gld-p) 1+(n-Dp

Now, we prove the inequality which gives the uppeund for determinant
of the information matrix of the weighing desigrM ., ({— 1 1})

Theorem 2.1.1f g>0,p0[0,1) andX OM,,,{-13), then

1~ -1 n "
defX'G x)s(g(l_p)] , (2.3)

whereG is given by the formula (2.1).

Proof. Let X =[Xy, X,,..., X, ] UM nxp({—ll}) and G be given by (2.1). By

the Hadamard's inequality it follows that the deternmhaf the information
matrix is smaller or equal to the product of diaglaglements of this matrix, it is

p

del(X’G'lx ﬁ xc;‘lx ﬂx’ke'lxk. (2.4)



40 KRYSTYNA KATULSKA, tUKASZ SMAGA

By the assumptio p [1[0,1), we conclude thep/(1+(n—-1)p) = 0. Hence and
by Lemma 2.1, forak =1, 2,..., p we obtain the following inequality

r 2 1
X, G 7%, -1 X\ X, — (2 )'p < X (2.5)
gld-p) 1+(n=-Dp| 9gl-p)

It is easy to see that, X, =n, since XM nxp({— ll}) Therefore, from

inequalities (2.4) and (2.5) we have the inequéiiti).
The proof is completas

Definition 2.1. Any chemical balance weighing desiX [] Mnxp({— :L:I}) with

covariance matrix of errol0°G , whereG is given by (2.1)p 0 [0,1), is said
to be D*-optimal if it satisfies the equality in.8, that is

de{X'G ‘lx)=(g(1”_ p)} . (2.6)

By Theorem 2.1 it follows that D*-optimal weighinglesign is
D-optimal. In general, the opposite implicationnst true, because there are
D-optimal designs which are not D*-optimal for somhesign parameters. The
sufficient conditions under which the chemical bak weighing design is
D*-optimal are given in the following theorem.

Theorem 2.2. Assume tha X LJM nxp({— :L:I}) is the weighing design with the

covariance matrix of errol6°G , whereG is given by (2.1) witt g >0, then
the desigr X is D*-optimal if
1. p=0andX’X=nl .

2. pO(0D, XX =nl, andX'1, =0,.

Proof. Let X =[Xy, Xy, ..., xp] DMnxp({—:Ll}) be the design with the
covariance matrix of erroi0°G , where the matri G is given by (2.1).

1. If XX =nl o then X{xj =0 fori#j,i,j=12,...,p. Hence and by
Lemma 2.1 it follows that ip = 0, then the information matrix of the desi X

is equal to the matri(n/ g)l ,, so its determinant satisfies the equality (2.6).

p?
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2. If pO0(0,2) and x, 1, :O(k =12,..., p), then by Lemma 2.1 we
deduce that the information mat X'G ™X =n/(g(1-p))! » and therefore the

equality (2.6) is also satisfied.
Thus, the desigiX is D*-optimal in both cases. This completes theofirm

Masaro and Wong (2008) proved the following theorem

Theorem 2.3. (Masaro and Wong, 2008). Let 6°G , where the matri:G is
given by (2.1), be the covariance matrix of randmnors. Moreover, we assume
that

n=0(mod4), n>p+1 Z0OD, ={XOM, ({-11}) : X'X=nl } and
Z'1, =0,. Then the desigZ is D-optimal in the subcla: D, for allp > 0.

So, Theorems 2.1 and 2.2 expand the result of €he@:3. In Masaro and
Wong (2008), some construction of desZ) which satisfies the assumptions
of Theorem 2.3, is also given. We present and hisecbnstruction in the proof
of Theorem 3.1.

3. Construction of D"-optimal weighing designs

In this section, we present a construction of Dthopl weighing designs
by means of Hadamard matrices. Lots of informatibout Hadamard matrices
can be found in Hedayat and Wallis (1978). We dhve construction in the
proof of the following theorem.

Theorem 3.1. Letp=0,n=p or p (0,D),n= p+1. The existence of a
Hadamard matri:H , of ordern implies the existence of the Dptimal design

matrix XUM .., ({— 1 1})

Proof. Let H DMnxn({—l]}) be a Hadamard matrix of ordin. Then
H'H_ =nl . So, if p=0, then the weighing design composed fri pi
columns of the matri:H  is D'-optimal. Now, we assume thp 0 (0,1). One
can negate every row of thmatrix H, whose first element i—1 and thus

obtaining thematrix H , with the first column of ones, but stH'H =nl

n*
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Let H, =[1,,h,,h,,....,h ] The columns oH, are orthogonal and sum of
elements in each columexcept the first oneof this matrix is zero because
the columnsh,,h,,...,h _, are orthogonal to the first columh, Therefore,
X composedrbm p columns ofh,,h,,...,h  is the D-optimal design
matrix by Theorem 2.2a

We illustrate the above construction of-@ptimal weighing design by an
example.

Example 3.1. The following matrix is a Hadamard matrix of si12x12
(= denotes—1 and + representl)

+ - 4+ + o+ 4+ + + o+
+ o+ - -+ - - -+
¥+ 4+ -+ + - - - =+ 4
-+ o+ -+ -+ - - +
+ o+ 4+ + - + - - - -
+ - + - - - - - 4+ - +

Hi = + - - -+ - — + +]|
+ - - ¥ - - - + - - +
¥ + - - - - + o+ -+ o+
+ - - -+ - - - + -
+ o+ - - - - + o+ -
+ - - - 4+ - + - - -

The first element of the fourth and the seventh awhe matrix H,,

is equal to—1. Therefore, we negate these rows and we get thewiop
matrix:
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12—

I
[
+ + + + + + + + + + + o+

+ +

+ +

I+ + 4+

+ +

+ + o+

I+ + +

+ +

+ + o+

+ + +

Therefore, we construct Bptimal design fromp columns ofﬁ12 (from the
second column to the last). For example, the desitinthe matrix

+ + + +

+

+ + + +

+

is D -optimal weighing design fop =5 objects.

4. Application

+

+ o+ +

+

In this section, we present an example of the epfptin of the optimal
chemical balance weighing designs in the bioengingeexperiment given in
the literature. Namely, Gawande and Patkar (19689¢ribed two experiments in
which the effect of dextrin, peptone, yeast extramthmonium dihydogen

orthophosphat((NH,H,PO,), and magnesium sulfa(MgSO, [TH,O) on
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production of cyclodextrin glycosyltransferase fraftebsiella pneumoniae
pneumoniae AS-22 was investigated in two experiments 2°* fractional
factorial designs. One of the designs and the ghtiens are given in Table 1.

2°" fractional factorial designs were used for theimijzation of medium

composition for production of mentioned enzyme. Tdptimization medium

resulted in 9-fold higher production as comparethét in the basal medium.
The matrices of the plan of factorial designs acfion factorial designs are

chosen from the s¢M nxp({— :L:I}) which is the set of the weighing designs.
If we can not use th2 factorial design, then we choose sc2* fractional
factorial design. Of course, we would like to haveyood fractional factorial

design. To do this, we can take as a matrix ofpla@ of the 2™ fractional
factorial design the design matrix of D-optimal gleng design. It is easy to
calculate that Gawande and Patkar (1999) usec2°™: fractional factorial
designs which matrices of the plan z{Dé-optimaI even when the errors are
correlated wittp > 0.

Table 1. Experimental results of one of fractional facabdesigns from Gawande and Patkar

1999

Flask Dextrin Peptone Yeast : NI2I4H ,PO, MgSO, [TH,0 Activity

no. extract (U/ml)
1 — — - - - 3.97
2 - - - + + 5.99
3 — — + - + 413
4 — — + + - 5.59
5 — + - - + 5.18
6 — + - + - 6.47
7 — + + - - 5.12
8 — + + + + 6.53
9 + — - - - 5.39
10 + — - + + 5.25
11 + — + - + 5.39
12 + — + + - 6.06
13 + + - - + 4.98
14 + + - + - 6.74
15 + + + - - 5.66
16 + + + + + 8.42
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