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Summary 

In this paper, we consider the chemical balance weighing designs for estimation of individual 
unknown weights of objects using D-optimality criterion. We suppose that the random errors are 
equally non-negative correlated and they have equal variances. The upper bound of the 
determinant of the information matrix of weighing designs is proved. Some sufficient conditions 
for this upper bound to be attained are given. The construction of D-optimal designs, which satisfy 
this upper bound, is also presented. Some application of optimal weighing designs in 
bioengineering experiment given in the literature is also described. 
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1. Introduction 

Let us assume that an 1×n  vector of observations ],,,[ 21 ′= nyyy Ky  

follow the linear model ,eXwy +=  where ],,,[ 21 ′= pwww Kw  is a vector 

of unknown weights of p  objects, ][ ijx=X  is the pn ×  design matrix, 
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],,,[ 21 ′= neee Ke  is the vector of random errors. In the chemical balance 

weighing design, )1(1 −== ijij xx  if the jth object is placed on the right (left) 

pan during the ith weighing operation. We assume that ]0,,0,0[)(E ′= Ke  is 

1×n  null vector and Ge 2)(Var σ= , where 0>σ  is the known parameter and 

the matrix G  is the known positive definite matrix. The weighing design is 
identified with its design matrix. 

Among all the weighing designs we would like to choose the best one for a 

specific criterion. We consider D-optimality criterion. The design X̂  is 
D-optimal in the class of the designs  { }( )1,1−⊆ × pnMC , where { }( )1,1−× pnM  

is the set of all pn ×  matrices with elements 1 or 1− , if 

( ) ( ){ }C∈= −− XXGXXGX :ˆ'ˆdetmaxˆ'ˆdet 11  The matrix  XGX ˆ'ˆ 1−  is called the 

information matrix of the weighing design X . 
Many results about D-optimal weighing designs are known in the literature 

(see, for example, Galil and Kiefer 1980, Jacroux et al. 1983) when G  is the 
identity matrix, i.e. random errors are uncorrelated and have equal variances. 
The case where random errors form the first order autoregressive process was 
considered in Katulska and Smaga (2012, 2013), Li and Yang (2005), Yeh and 
Lo Huang (2005). In Masaro and Wong (2008), D-optimal weighing designs in 
some subclasses of the class of weighing designs for p  objects assuming that 
the random errors are equally correlated and they have equal variances are 
considered. 

In this paper, we present the results about D-optimal chemical balance 
weighing designs assuming that the random errors are equally non-negative 
correlated and they have equal variances. Some construction of the D-optimal 
weighing designs is also given. At the end, we present the application of optimal 
weighing designs in bioengineering experiment  given in the literature. 

2. D-optimal chemical balance weighing designs 

In this section, we present some results about the D-optimal weighing 
designs when errors are equally non-negative correlated and they have equal 
variances. These assumptions imply that the covariance matrix of errors can be 

written in the form ,2Gσ  where 

 ],)1[( nnng 11IG ′ρ+ρ−=  (2.1) 
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0>g  and ).1,0[∈ρ  The inverse matrix of G is given by the following 
formula 

 .
)1(1)1(

11







 ′
ρ−+

ρ−
ρ−

=−
nnn ng

11IG  (2.2) 

The following lemma describes elements of the information matrix of 

weighing designs with the covariance matrix of errors ,2Gσ  where the matrix 

G  is given by (2.1). 
 

Lemma 2.1. Let { }( )1,1],,,[ 21 −Μ∈= × pnpxxxX K  and the matrix G  be 

given by (2.1). If  ,,,2,1, pji K=  then  
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Now, we prove the inequality which gives the upper bound for determinant 
of the information matrix of the weighing design in { }( ).1,1−Μ × pn   

Theorem 2.1. If )1,0[,0 ∈ρ>g  and { }( )1,1−Μ∈ × pnX , then  

 ( ) ,
)1(

det 1

p
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
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

ρ−
≤′ − XGX  (2.3) 

where G  is given by the formula (2.1). 

Proof. Let { }( )1,1],,,[ 21 −Μ∈= × pnpxxxX K  and  G  be given by (2.1). By 

the Hadamard’s inequality it follows that the determinant of the information 
matrix is smaller or equal to the product of diagonal elements of this matrix, it is   

  ( ) ( ) ∏∏
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11 .det xGxXGXXGX  (2.4 ) 
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By the assumption ),1,0[∈ρ  we conclude that .0))1(1/( ≥ρ−+ρ n  Hence and 

by Lemma 2.1, for all pk ,,2,1 K=  we obtain the following inequality 
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It is easy to see that ,nkk =′ xx  since { }( ).1,1−Μ∈ × pnX  Therefore, from 

inequalities (2.4) and (2.5) we have the inequality (2.3).  
The proof is complete. ■ 

Definition 2.1. Any chemical balance weighing design { }( )1,1−Μ∈ × pnX  with 

covariance matrix of errors G2σ , where G  is given by (2.1), ),1,0[∈ρ  is said 
to be D*-optimal if it satisfies the equality in (2.3), that is  

  ( ) .
)1(

det 1

p

g

n




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



ρ−
=′ − XGX  (2.6) 

By Theorem 2.1 it follows that D*-optimal weighing design is  
D-optimal. In general, the opposite implication is not true, because there are  
D-optimal designs which are not D*-optimal for some design parameters. The 
sufficient conditions under which the chemical balance weighing design is  
D*-optimal are given in the following theorem. 

Theorem 2.2. Assume that { }( )1,1−Μ∈ × pnX  is the weighing design with the 

covariance matrix of errors G2σ , where G  is given by (2.1) with 0>g , then 

the design X  is D*-optimal if  
1. 0=ρ  and pnIXX =′ . 

2. ),1,0(∈ρ  pnIXX =′  and pn 01X =′ .  

Proof. Let { }( )1,1],,,[ 21 −Μ∈= × pnpxxxX K  be the design with the 

covariance matrix of errors G2σ , where the matrix G  is given by (2.1).  
1. If ,pnIXX =′ then 0=′ jixx  for .,,2,1,, pjiji K=≠  Hence and by 

Lemma 2.1 it follows that if 0=ρ , then the information matrix of the design X  

is equal to the matrix ,)/( pgn I  so its determinant satisfies the equality (2.6).  
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2. If )1,0(∈ρ  and ( ),,,2,10 pknk K==′ 1x  then by Lemma 2.1 we 

deduce that the information matrix pgn IXGX ))1(/(1 ρ−=′ −  and therefore the 

equality (2.6) is also satisfied.  
Thus, the design X  is D*-optimal in both cases. This completes the proof. ■ 

Masaro and Wong (2008) proved the following theorem. 

Theorem 2.3. (Masaro and Wong, 2008). Let G2σ , where the matrix G  is 
given by (2.1), be the covariance matrix of random errors. Moreover, we assume 
that  

),4(mod0≡n  ,1+≥ pn  }:})1,1({M{ ppn0 nD IXXXZ =′−∈=∈ ×  and 

.pn 01Z =′  Then the design Z  is D-optimal in the subclass 0D  for all .0>ρ  

So, Theorems 2.1 and 2.2 expand the result of Theorem 2.3. In Masaro and 
Wong (2008), some construction of design Z , which satisfies the assumptions 
of Theorem 2.3, is also given. We present and use this construction in the proof 
of Theorem 3.1. 

3. Construction of D*-optimal weighing designs 

In this section, we present a construction of D*-optimal weighing designs 
by means of Hadamard matrices. Lots of information about Hadamard matrices 
can be found in Hedayat and Wallis (1978). We give the construction in the 
proof of the following theorem. 

Theorem 3.1. Let pn ≥=ρ ,0  or 1),1,0( +≥∈ρ pn . The existence of a 

Hadamard matrix nH  of order n  implies the existence of the D*-optimal design 

matrix { }( ).1,1−Μ∈ × pnX  

Proof. Let { }( )1,1−Μ∈ ×nnnH  be a Hadamard matrix of order .n  Then 

.nnn nIHH =′  So, if 0=ρ , then the weighing design composed from p  

columns of the matrix nH  is D*-optimal. Now, we assume that ).1,0(∈ρ  One 

can negate every row of the matrix nH  whose first element is 1−  and thus 

obtaining the matrix nH  with the first column of ones, but still .nnn nIHH =′  
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Let [ ].,,,, 121 −= nnn hhh1H K  The columns of nH  are orthogonal and sum of 

elements in each column (except the first one) of this matrix is zero because 
the columns 121 ,,, −nhhh K  are orthogonal to the first column .n1  Therefore, 

X  composed from p  columns of 121 ,,, −nhhh K  is the D*-optimal design 

matrix by Theorem 2.2. ■ 

We illustrate the above construction of D*-optimal weighing design by an 
example. 

Example 3.1. The following matrix is a Hadamard matrix of size 1212×   
−(  denotes 1−  and +  represents )1  
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−+−−−++−+−−+
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+−+−−+−−−+−+
−−−−++−+++++
+−−+−++−+++−
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+−+−+−+−+−++
++++++++++−+

=12H . 

 
The first element of the fourth and the seventh row of the matrix 12H   

is equal to .1−  Therefore, we negate these rows and we get the following 
matrix: 
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Therefore, we construct D*-optimal design from p  columns of 12H  (from the 
second column to the last). For example, the design with the matrix 


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is D*-optimal weighing design for 5=p  objects.  

4. Application 

In this section, we present an example of the application of the optimal 
chemical balance weighing designs in the bioengineering experiment given in 
the literature. Namely, Gawande and Patkar (1999) described two experiments in 
which the effect of dextrin, peptone, yeast extract, ammonium dihydogen 
orthophosphate )POH(NH 424 , and magnesium sulfate O)7H(MgSO 24 ⋅  on 
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production of cyclodextrin glycosyltransferase from Klebsiella pneumoniae 

pneumoniae AS-22 was investigated in two experiments for 152 −  fractional 
factorial designs. One of the designs and the observations are given in Table 1. 

152 −  fractional factorial designs were used for the optimization of medium 
composition for production of mentioned enzyme. The optimization medium 
resulted in 9-fold higher production as compared to that in the basal medium.  

The matrices of the plan of factorial designs or fraction factorial designs are 
chosen from the set { }( ),1,1−Μ × pn  which is the set of the weighing designs.  

If we can not use the k2  factorial design, then we choose some 12 −k  fractional 
factorial design. Of course, we would like to have a good fractional factorial 

design. To do this, we can take as a matrix of the plan of the 12 −k  fractional 
factorial design the design matrix of D-optimal weighing design. It is easy to 
calculate that Gawande and Patkar (1999) used the 152 −  fractional factorial 
designs which matrices of the plan are D*-optimal even when the errors are 
correlated with .0>ρ   

Table 1. Experimental results of one of fractional factorial designs from Gawande and Patkar 
(1999) 

Flask 
no. 

Dextrin  Peptone  Yeast 
extract  

424 POHNH  O7HMgSO 24 ⋅   Activity 
(U/ml) 

1 −  −  −  −  −  3.97 
2 −  −  −  +  +  5.99 

3 −  −  +  −  +  4.13 

4 −  −  +  +  −  5.59 

5 −  +  −  −  +  5.18 

6 −  +  −  +  −  6.47 

7 −  +  +  −  −  5.12 

8 −  +  +  +  +  6.53 

9 +  −  −  −  −  5.39 

10 +  −  −  +  +  5.25 

11 +  −  +  −  +  5.39 

12 +  −  +  +  −  6.06 

13 +  +  −  −  +  4.98 

14 +  +  −  +  −  6.74 

15 +  +  +  −  −  5.66 

16 +  +  +  +  +  8.42 
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