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Summary

The specific character of research into plant mtaie entails a need for studies on the
planning and analysis of such experiments. We ptekere the properties of certain block
designs. Type S block designs are considered foererents in which there arelevels of an
experimental factor in addition to one control tneent.

We consider the case in which optimality can beéeadd relative to the Loewner ordering
among information matrices. We prove that withie ttiass of Type S block designs, we can
compare Fisher’'s information matrices in the Loemarelering. This fact enables the application
of the theory of M-optimality or the theory of clei of an M-better design. We present these
considerations in response to questions from gleostection researchers.

Keywords and phrases: M-better design, type S block design
Classification AM S 2000: 62K10

1. Introduction

Block designs for experiments with test treatments and one control
treatment were first considered in Hoblyn et al54)9 Statistical properties of
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such designs have been discussed by many autharshd supplemented
balance block design (Type S design) was definedPbgrce (1960). The
properties of the supplemented balance block desaye described in Hedayat
et al (1988). Construction methods for Type S bldekigns were introduced
and described in Gupta and Kageyama (1993). A faldesen with parameters
of many such block designs for<dr < 24. The supplemented balance block
design has been considered in recent years byexmmple, Hinkelmann and
Kempthorne (2005) and Bailey (2008), and earlierGaflinski and Ceranka
(1974), Koztowska and Btazak (1990) and Pearce (1995).

Type S block designs are used for plant protecéigperiments because
these frequently compare a few test treatmentsavighcontrol treatment. Many
such experiments have to be limited in terms of nhebers of replications
of test treatments. In this situation, Type S bldelsigns with a small number
of replications for test treatments and a greatenbrer for the control are used.
These are also connected block designs.

In this paper we describe the special problem efdhoice of a Type S
block design in response to questions from plaotietion researchers.

2. Framework

In this section we consider only connected blocgighes. We have test
treatments and one control treatment added. Thieatmtents are arranged on
experimental units which are groupedhrblocks in a such way that Fisher’s
information matrix has the following form:

{ WA -w,1' }
C= , 2.1)

-w,1  (w, +w)l —w, 11

wherewy (> 0) andw; (> 0) denote some known parametérs, the unit matrix
of orderv and1is thev- dimensional vector of ones. Gupta and Kageyama
(1993) give a definition according to which a desis said to be Type S

if var{t, -1,) <var@, -1,) for i#j=12..v, where T, denotes
estimator of parameter, (k=0, 1, ...,v) and T = (1,,T,,T,,...,T,)" is the

vector of treatment parameters for the control st treatments respectively.
Since the information matrix has the form (2.1) and

Varﬁi _fo) = (W +wy ) (W, -"Wvl)_lW(;lO-2 | varﬁi _:fj) =2(W, +\AN1)_102

fori# j=12,...,v, hence it is easy to see thaf < w,.
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For comparing Type S block designs we apply therhalescribed by
Bagchi and Bagchi (2001). The authors state thitsiggnd, L D is said to be

better than another desigh [I D in the sense of majorization (M-better) if the
vector Y, of eigenvalues of the information matrix for desidn is weakly

majorized by the vectoy of eigenvalues of the information matrix for design

d,. Bagchi and Bagchi state that a des@in] D is said to be optimal in the
sense of majorization (M-optimal) if it is M-bettdran every other design i
Hence we recall the theory described by Marshallle(2011, p. 8) and
Pukelsheim (2006). For any row vecter=(xy, Xa, ..., %,)'[0R" for which
X1 £ X £ ... £ X We can say that the vectoris majorized by the vectar,
denoted ax <y, if the following relations hold

Zk:xi >y ,andzv“xi =Zv:yi fork=12...,v-1.
i=1

k
i=1 i=1 i=1
We can say too that the vectwris weakly majorized by the vectagr,

denoted asx <"y, if for k=1212,...,v—1 the first of the above relations
holds.

3. Background

Let A be any {+1)x(v+1) symmetric positive semidefinite matrix. It is
known that all its eigenvalues are non-negatigeddterminant is equal to zero
and it is a singular matrix. Other properties regsome results that will be
proved now.

Let matrixA be partitioned as follows:

(3.1)

al +b11l -cl
A= )
{ —-cl d }

where al +bll’ is avxv symmetric positive definite submatrix. Hence all
eigenvalues of the matrial +bll" are positive and have the forbg, +a,

where €, denotes the eigenvalues of the squane matrix 11". Fori =1 we
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have €, =v and fori = 2, ...,v we haveg, =0. Because the eigenvalues of

a positive definite matrix are positive, hertme+ a>0 anda > 0. On the other
hand when the inequalitidsv + a>0 anda >0 hold, the matrixal + b1l is
positive definite, hence we have

Lemma 3.1. A necessary and sufficient condition for thes matrix al +b11’
to be positive definite is the truth of the inedtie bv+a>0 anda>0.

In this case the determinant of the matrat +bll’ has the form
def(al +b11')=a"*(bv +a). Because we assume that the maaix+ b11’
is positive definite, hence det{ + b11') > 0. For any positive definite matrix
Sylvester’s theorem holds (see for example GildE381). It is known when a
matrix is positive definite, all of the leading peipal minors are positive. Hence
for the first principal minor we hava+b >0.

Now we calculate the determinant of the ma&ixApplying formula (1.1)
from Powell (2011), we obtain

| +b11
det@d) = de{a ,
-cl

=da"*((b-d7c®)v+a) =a" " (-c’v+d(bv+a)).

¢l
; } = ddet@@l +(b-dc?)11) =

c?v

bv+a

If det(A) = 0 thena" ™ (-c’v+d(bv+a)) =0 = d = . Hence we have

Lemma 3.2. Let A be a square matrix of the form (3.1), whéne+a >0 and
a>0. ThenA is positive semidefinite if and only if the diagdrelementd

equalsc®v(bv +a) .
Using the properties of determinants, we can sate th

— for any symmetric matri of the form (3.1)

al +bl1 -cl d -cl .
de =de ;
-cl d -cl al +bll
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A B
— any square partitioned mat{xC D} is positive semidefinite if and only if
. |D C
so is the matri .
B A

4. M-better type S block designs

Choice of an appropriate experimental plan allowe do obtain the
maximum amount of information, in a certain senskjch is contained in
Fisher's information matrix A decision concerning the choice of a better
experimental plan is obtained by comparing the rmftion matrices. A full
comparison of information matrices is known as ttmewner ordering of
symmetric matrices.

Recall that according to the Loewner ordering (Mallset al. 2011, p.
670), for two Hermitian matrice® and B, A <B meansB — A is positive
semidefinite,A <B meansB — A is positive definite.

It is known that for two matrice€, and C, which are in the Loewner
ordering C, 2C,), vector of eigenvalues of matrixC,, Yy, is weakly
majorized by the vector of eigenvalues of maftix, Yy, (y, <"y,) (Marshall
et al. 2011, p. 360).

Let C, andC, denote the matrices of the form (2.1). In thisec@s —C;
has the following form;

C,-C, = V(W0 = W) = (Wyo = Wyo)T 1 @
= (Wap =Wio)1  ((Wog = Wyp) +V(Wa1 =Wy ))I = (Wag — Wy )11

Theorem 4.1. For two Type S designsl, and d, from classD(v+1), their

information matrices are in the Loewner orderifig, (= C,) if the inequalities

(W, —W,) 20 and(w,, —w;;) =0 hold.

Proof: Consider the four possibilities. Firstly, if(w,, —w,,) =0and

(w,, =w,;) =0 then C,—-C; is the zero matrix, and thus is semipositive
definite.
Secondly, if(W,, —W,,) =0 and (wW,, —w;,) >0 then
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C.—C = 0 0]
’ "o V(Wo; = W)l = (W, =Wy, )1T .

In fact, the distinct eigenvalues &, —C, coincide with the eigenvalues
of V(W,, —w,,)I —(W,, —wj;)11" which in turn are equal te ( w,; —w;y;) and
0. HenceC, — C, is semipositive definite.

Thirdly, if (W,, —W,,) >0 and (W,, —w;,) =0 then
C,-C, = { V(Woo = Wio) = (W = W10)1’j| _
= (Woo =Wip)1 (W = W)l

It is easy to see tha(C2 —Cl)l =0. Thus that the matrixC, —C, is
semipositive definite.

Fourthly, the determinant of a matr, —C, of the form (4.1) is equal to
the determinant of the following matrix

((Wog = Wig) +V(W,y =Wy, ))I = (W, — W11)11' = (Wy = Wy)1
= (Wy = Wyp)T V(W0 = Wig) .

If (W,, —W,,)>0 and (w,, —W,;) >0 then from Lemma 3.1 we obtain
that the matrix ((W,o — W) + V(W,, — W)l — (W, —w,,;)11" is positive
definite. Since the last diagonal element is edoal(w,, —w,,), from lemma
3.2 the matrixC, — C, is semipositive definite. Hence the proof is coste!]

Proposition 4.1. A block designd, is M-better thand, in the class of type S
block design®(v+1) if W,, =w,, andw,, =W,;.

5. Resear ch on alternative methods of plant protection

As a result of intensive changes in plant producaod of environmental
changes in agrocenoses, certain agrophages have daessing increasing
amounts of damage to agricultural crops. As a tefuh European Parliament
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and Council Directive adopted on 13 January 2088, dountries of Europe
have been required to implement integrated plamteption. One of the
principles of this protection is the implementatiainstrategies which minimize
the use of chemical pesticides. It therefore besomecessary to seek
environmentally safe substances and to developchemical methods for
protecting plants. Studies have been made of fieetefeness of iron phosphate
and P. hermaphrodita nematode doses in limiting damage to Chinese ¢gbba
seedlings in combating Polish populations of theagive slug speciedrion
lusitanicus. Four test treatments and one control treatmemé weed, and the
experiment was carried out in a Type S block desigje considered different
schemes of arrangement of treatments on experiinentis, namely Type S
block designs from the clad3(v+1=5). In this class there are type S block
designs with the following parameters:

1.v=4r=11r,=12k =2k, =3 b =10b, =12 w, =15 w, =2
2.v=4,r1=111,=18 k =2k, =3 b, =4,b, =18 w, = 133 w, = 3;
3.v=4r=13r,=12k =2k, =3 b, =14b, =12 w, =183 w, =2;
4.v=4r =13 r,=18 k, =2k, =3 b, =8 b, =18 w, = 167, W, =3;
5.v=4r=16r1,=18 k =2k, =3 b, =14 b, =18 w, = 217, w, =3,
6.v=4r =17,r,=18 k =2k, =3 b, =16,b, =18 w, = 233 w, =3,

where v denotes number of test treatments,— number of test treatments
replicationsyo, — humber of control treatment replicatiobs; number of blocks
with a capacity ok;, b, - number of blocks with a capacity kf w; andw, are
the same as in (2.1). These parameters satisiohationvr, + ro = bik; + boko.

The last design is M-better than others with theapeters given above.
There are four treatments with seventeen replioatend one control treatment
with eighteen replications which are arranged oreggerimental units. These
units are grouped in sixteen blocks of size two aext eighteen blocks of size
three. The design is given by Gupta and Kageya®@3)l described as 4SR1 +
R5S + 2(2, 2)S, according to Clatworthy (1973) tiota The incidence matrix
of the design may be written in the following form



88 MARIA KOZLOWSKA, RYSZARD WALKOWIAK, JAN KOZt OWSKI

b.
- -
N
- -
.-
~

.b.
T
N
EN
-~
~

.b.
- N -
N
- 5 -
.3 -
~

P

1
o O bH = O
= - J>O o O
N N
QO - bH o O
O O R Rk R
R P, O O R
P O O R B
O r KL O r
O O Kk

~
RO B O
~ -~ -

~
~
~
~

where0, andl, are thev - dimensional vectors of zeros and ones, respectively

The experiment was performed under laboratory d¢mmdi. Every two
days, damage to the plants was determined by @sfiv@@-point scale (damage
to 0, 25, 50, 75 and 100% of the plant surface)e Tésult showed thd®.
hermaphrodita reduced damage to cabbage plants on the seventhofda
observations. Ferramol significantly decreaseddamage to plants from the
first day. The research indicated that both praglace a valuable alternative to
currently used molluscicides.

Acknowledgment

The project is supported by National Center for eSce contract no.
7350/B/P01/2011/40.

References

Bagchi B., Bagchi S. (2001). Optimality of Partial @exiric DesignsThe Annals of Satistics
29(2), 577-594.

Bailey R. A. (2008). Design of comparative experirse@ambridge University Press.

Calinski T., Ceranka B. (1974). Supplemented bloclgtesBiometrical Journal 16, 299—-305.

Clatworthy W.H. (1973).Tables of Two-Associate-Class Partially Balanced Designs. Applied
Mathematics Series 63, National Bureau of Stand&Wdshington.

Gilbert G.T. (1991). Positive Definite Matrices arfylvester's Criterion.The American
Mathematical Monthly 98(1), 44—46.

Gupta S., Kageyama S. (1993). Type S designs widgual blocksJournal of Combinatorics,
Information and System Sciences 18, 97-112.

Hoblyn T., Pearce S., Freeman G. (1954). Some dersions in the design of successive
experiments in fruit plantationBiometrics 10, 503-515.

Hedayat A.S., Jacroux M., Majumdar D. (1988). Optimesigns for comparing test treatments
with controls (with discussionatist. Sci. 3, 462—491.



M-BELTER TYPE S BLOCK DESIGN FOR RESEARCH... 89

Hinkelmann K., Kempthorne O. (2005Pesign and analysis of experiments. Wiley Series
in Probability and Statistics 276.

Koztowska M. (2011). M-better block design in biparass Dy=4w, b=6, n=3v). Colloquium
Biometricum 41, 155-163.

Koztowska M., Btaczak P. (1990). Uktady blokowe typu PDwudzieste Colloquium
Metodologiczne z Agro-Biometrii, 70-77.

Marshall A.W., Olkin I., Arnold B. C. (2011)lnequalities: Theory of Majorization and Its
Applications. Second Edition. Springer Series in Statisticsrigyer.

Pearce S. C. (1960). Supplemented balaBiometrika 47(3 and 4), 263-271.

Pearce S.C. (1995%0ome design problems in crop experimentation. I11. Non-orthogonality,
Experimental Agriculture. Cambridge University Press 31, 409—422.

Powell P.D. (2011). Calculating determinants of klmeatrices. arXiv:1112.4379v1 [math.RA]
16DEC2011, 1-11.

Pukelsheim F. (2006)Optimal Design of Experiments. Classics in Applied Mathematics 50,
Philadelphia.



