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Summary 

The specific character of research into plant protection entails a need for studies on the 
planning and analysis of such experiments. We present here the properties of certain block 
designs. Type S block designs are considered for experiments in which there are v levels of an 
experimental factor in addition to one control treatment.  

We consider the case in which optimality can be achieved relative to the Loewner ordering 
among information matrices. We prove that within the class of Type S block designs, we can 
compare Fisher’s information matrices in the Loewner ordering. This fact enables the application 
of the theory of M-optimality or the theory of choice of an M-better design. We present these 
considerations in response to questions from plant protection researchers.  
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1. Introduction 

Block designs for experiments with v test treatments and one control 
treatment were first considered in Hoblyn et al (1954). Statistical properties of 
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such designs have been discussed by many authors, but the supplemented 
balance block design (Type S design) was defined by Pearce (1960). The 
properties of the supplemented balance block design were described in Hedayat 
et al (1988). Construction methods for Type S block designs were introduced 
and described in Gupta and Kageyama (1993). A table is given with parameters 
of many such block designs for 4 ≤ v ≤ 24. The supplemented balance block 
design has been considered in recent years by, for example, Hinkelmann and 
Kempthorne (2005) and Bailey (2008), and earlier by Calinski and Ceranka 
(1974), Kozłowska and BłaŜczak (1990) and Pearce (1995). 

Type S block designs are used for plant protection experiments because 
these frequently compare a few test treatments with one control treatment. Many 
such experiments have to be limited in terms of the numbers of replications  
of test treatments. In this situation, Type S block designs with a small number  
of replications for test treatments and a greater number for the control are used. 
These are also connected block designs.  

In this paper we describe the special problem of the choice of a Type S 
block design in response to questions from plant protection researchers.    

2. Framework  

In this section we consider only connected block designs. We have v test 
treatments and one control treatment added. These treatments are arranged on 
experimental units which are grouped in b blocks in a such way that Fisher’s 
information matrix has the following form: 
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where w0 (> 0) and w1 (> 0) denote some known parameters, I is the unit matrix 
of order v and 1 is the v - dimensional vector of ones. Gupta and Kageyama 
(1993)  give a definition according to which a design is said to be Type S  
if )ˆˆvar()ˆˆvar( 0 jii τ−τ<τ−τ  for vji ,...,2,1=≠ , where kτ̂  denotes 

estimator of parameter kτ (k = 0, 1, …, v) and )',...,,,( 210 vττττ=τ  is the 

vector of treatment parameters for the control and test treatments respectively. 
Since the information matrix has the form (2.1) and 

21
0

1
10100 ))(()ˆˆvar( σ++=τ−τ −− wvwwwwi , 21

10 )(2)ˆˆvar( σ+=τ−τ −vwwji  

for vji ,...,2,1=≠ , hence it is easy to see that 01 ww < . 
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For comparing Type S block designs we apply the theory described by 
Bagchi and Bagchi (2001). The authors state that a design Dd ∈2  is said to be 

better than another design Dd ∈1  in the sense of majorization (M-better) if the 

vector 
2dγ of eigenvalues of the information matrix for design 2d  is weakly 

majorized by the vector 
1dγ of eigenvalues of the information matrix for design 

1d . Bagchi and Bagchi state that a design Dd ∈0  is said to be optimal in the 

sense of majorization (M-optimal) if it is M-better than every other design in D. 
Hence we recall the theory described by Marshall et al (2011, p. 8) and 
Pukelsheim (2006). For any row vector x =(x1, x2, …, xv)′∈Rv for which  
x1 ≤ x2 ≤ … ≤ xv  we can say that the vector x is majorized by the vector y, 
denoted as yx p , if the following relations hold 
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 for 1,,2,1 −ν= Kk . 

We can say too that the vector x is weakly majorized by the vector y, 

denoted as yx w
p , if for 1,,2,1 −ν= Kk  the first of the above relations 

holds.  

3. Background 

Let A be any (v+1)×(v+1) symmetric positive semidefinite matrix. It is 
known that all its eigenvalues are non-negative, its determinant is equal to zero 
and it is a singular matrix. Other properties require some results that will be 
proved now.  

Let matrix A be partitioned as follows:  
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where 11I ′+ ba  is a v×v symmetric positive definite submatrix. Hence all 
eigenvalues of the matrix 11I ′+ ba  are positive and have the form ab i +ε , 

where iε  denotes the eigenvalues of the square v×v matrix 11 ′ . For i =1 we 
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have v=ε1  and for i = 2, …, v we have 0=ε i . Because the eigenvalues of 

a positive definite matrix are positive, hence 0>+ abv  and 0>a . On the other 
hand when the inequalities 0>+ abv  and 0>a  hold, the matrix 11I ′+ ba  is 
positive definite, hence we have 

Lemma 3.1. A necessary and sufficient condition for the v×v matrix 11I ′+ ba  
to be positive definite is the truth of the inequalities 0>+ abv  and 0>a . 

In this case the determinant of the matrix 11I ′+ ba  has the form 

( ) )(det 1 abvaba v +=′+ −11I . Because we assume that the matrix 11I ′+ ba  

is positive definite, hence det( 11I ′+ ba ) > 0. For any positive definite matrix 
Sylvester’s theorem holds (see for example Gilbert, 1991). It is known when a 
matrix is positive definite, all of the leading principal minors are positive. Hence 
for the first principal minor we have 0>+ ba .   

Now we calculate the determinant of the matrix A. Applying formula (1.1) 
from Powell (2011), we obtain 
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Lemma 3.2. Let A be a square matrix of the form (3.1), where 0>+ abv  and 
0>a . Then A is positive semidefinite if and only if the diagonal element d 

equals 12 )( −+ abvvc . 

Using the properties of determinants, we can see that: 

− for any symmetric matrix A of the form (3.1)  
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− any square partitioned matrix 
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4. M-better type S block designs  

Choice of an appropriate experimental plan allows one to obtain the 
maximum amount of information, in a certain sense, which is contained in 
Fisher’s information matrix. A decision concerning the choice of a better 
experimental plan is obtained by comparing the information matrices. A full 
comparison of information matrices is known as the Loewner ordering of 
symmetric matrices.  

Recall that according to the Loewner ordering (Marshall et al. 2011, p. 
670), for two Hermitian matrices A  and B , BA ≤  means AB −  is positive 
semidefinite, BA <  means AB −  is positive definite. 

It is known that for two matrices 1C  and 2C  which are in the Loewner 

ordering ( 12 CC ≥ ), vector of eigenvalues of matrix 2C , 2γγγγ  is weakly 

majorized by the vector of eigenvalues of matrix 1C  , 1γγγγ  (
12 γγγγγγγγ w

p
) (Marshall 

et al. 2011, p. 360). 
Let 1C  and 2C   denote the matrices of the form (2.1). In this case 12 CC −  

has the following form:  
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Theorem 4.1. For two Type S designs 1d  and 2d  from class D(v+1), their 

information matrices are in the Loewner ordering ( 12 CC ≥ ) if the inequalities 

0)( 1020 ≥− ww  and 0)( 1121 ≥− ww  hold. 

Proof: Consider the four possibilities. Firstly, if 0)( 1020 =− ww and 

0)( 1121 =− ww  then C2 – C1  is the zero matrix, and thus is semipositive 
definite.  
Secondly, if 0)( 1020 =− ww  and 0)( 1121 >− ww  then  
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In fact, the distinct eigenvalues of 12 CC −  coincide with the eigenvalues 

of 11I ′−−− )()( 11211121 wwwwv  which in turn are equal to  v ( w21 – w11) and 

0. Hence 12 CC −   is semipositive definite.  

Thirdly, if 0)( 1020 >− ww  and 0)( 1121 =− ww  then 
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It is easy to see that ( ) 012 =− 1CC . Thus that the matrix 12 CC −  is 
semipositive definite. 

Fourthly, the determinant of a matrix 12 CC −  of the form (4.1) is equal to 
the determinant of the following matrix 
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If 0)( 1020 >− ww  and 0)( 1121 >− ww  then from Lemma 3.1 we obtain 

that the matrix 11I ′−−−+− )())()(( 112111211020 wwwwvww  is positive 

definite. Since the last diagonal element is equal to )( 1020 wwv − , from lemma 

3.2 the matrix 12 CC −  is semipositive definite. Hence the proof is complete.  

Proposition 4.1. A block design 2d   is M-better than 1d  in the class of type S 

block designs D(v+1)  if  1020 ww ≥  and 1121 ww ≥ . 

5. Research on alternative methods of plant protection 

As a result of intensive changes in plant production and of environmental 
changes in agrocenoses, certain agrophages have been causing increasing 
amounts of damage to agricultural crops. As a result of a European Parliament 
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and Council Directive adopted on 13 January 2009, the countries of Europe 
have been required to implement integrated plant protection. One of the 
principles of this protection is the implementation of strategies which minimize 
the use of chemical pesticides. It therefore becomes necessary to seek 
environmentally safe substances and to develop non-chemical methods for 
protecting plants. Studies have been made of the effectiveness of iron phosphate 
and P. hermaphrodita nematode doses in limiting damage to Chinese cabbage 
seedlings in combating Polish populations of the invasive slug species Arion 
lusitanicus. Four test treatments and one control treatment were used, and the 
experiment was carried out in a Type S block design. We considered different 
schemes of arrangement of treatments on experimental units, namely Type S 
block designs from the class D(v+1=5). In this class there are type S block 
designs with the following parameters: 

1. ;2,5.1,12,10,3,2,12,11,4 01212101 =========ν wwbbkkrr  

2. ;3,33.1,18,4,3,2,18,11,4 01212101 =========ν wwbbkkrr  

3. ;2,83.1,12,14,3,2,12,13,4 01212101 =========ν wwbbkkrr  

4. ;3,67.1,18,8,3,2,18,13,4 01212101 =========ν wwbbkkrr  

5. ;3,17.2,18,14,3,2,18,16,4 01212101 =========ν wwbbkkrr  

6. ;3,33.2,18,16,3,2,18,17,4 01212101 =========ν wwbbkkrr  

where v denotes number of test treatments, r1 – number of test treatments 
replications, r0 – number of control treatment replications, b1 - number of blocks 
with a capacity of k1, b2 - number of blocks with a capacity of k2,  w1 and w0 are 
the same as in (2.1). These parameters satisfy the equation vr1 + r0 = b1k1 + b2k2.  

The last design is M-better than others with the parameters given above. 
There are four treatments with seventeen replications and one control treatment 
with eighteen replications which are arranged on 86 experimental units. These 
units are grouped in sixteen blocks of size two and next eighteen blocks of size 
three. The design is given by Gupta and Kageyama (1993), described as 4SR1 + 
R5S + 2(2, 2)S, according to Clatworthy (1973) notation. The incidence matrix 
of the design may be written in the following form  
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where 0v and 1v are the v - dimensional vectors of zeros and ones, respectively.  
The experiment was performed under laboratory conditions. Every two 

days, damage to the plants was determined by using a five-point scale (damage 
to 0, 25, 50, 75 and 100% of the plant surface). The result showed that P. 
hermaphrodita reduced damage to cabbage plants on the seventh day of 
observations. Ferramol significantly decreased the damage to plants from the 
first day. The research indicated that both products are a valuable alternative to 
currently used molluscicides. 
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