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Summary 

RNA−Seq technology has been widely used in the natural sciences, biology and medicine.  

It is a tool for investigating cellular processes in animals and plants. RNA−Seq experiments 

provide quantitative readouts in the form of count data. In this paper we would like to present 

some R packages used in RNA−Seq data analysis, especially for investigating differentially 

expressed genes. 

Keywords and phrases: RNA−Seq, differentially expressed genes, edgeR, DESeq, EBSeq 

Classification AMS 2010: 62-07, 62-09 

1. Introduction 

Next-generation sequencing (NGS) is nowadays the fastest-growing 

technology that can be used in genomic measurements, characterization and 

quantification of transcriptomes. One of the NGS−based applications is 

RNA−Seq used for analysis of gene expression. RNA−Seq eliminated several 

limitations inherent in the hybridization-based microarray technologies. In 

addition, this technology provides new knowledge of the range of gene 

expression levels and detection of alternative splicing events and gene fusion 
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transcripts. RNA−Seq is used in cancer research and disease diagnosis. It also 

helps to control cellular processes in plants or animals. An RNA−Seq 

experiment takes a sample of purified RNA, shears it and makes it possible to 

perform an RNA analysis through cDNA sequencing, and, in the effect, 

obtaining millions of short reads (Oshlack et al., 2010). Subsequently, this 

experiment covers a low – level analysis (such as base calling, read mapping, 

alignment), a high – level analysis (such as normalization, quantification 

expression, differential expression) and, finally, biological insight. In this paper 

we focus on the statistical testing of differential expression. We would like to 

compare the recently proposed statistical methods of detecting differentially 

expressed genes from edgeR, DESeq and EBSeq packages from the R 

environment. The purpose of the paper is to describe an RNA−Seq experiment 

and some of its most important aspects. Secondly, we compare edgeR, DESeq 

and EBSeq and review certain useful functions used by these methods. We 

would like to stress the fact that the R platform version 3.0.2 was used in all the 

computations. 

2. RNA−Seq experiment 

The sequencing process consists of three steps: library creation, 

amplification and establishing the precise order of nucleotides within an RNA 

molecule. An RNA−Seq experiment using an Illumina’s Genome Analyzer 

approach takes an RNA sample, removes contaminants and divides it into small 

fragments in random positions. Subsequently, these fragments are converted to 

cDNA in the process of reverse transcription (Oshlack et al., 2010).  

A complementary strand is removed, special primers are attached and 

amplification using the polymerase chain reaction occurs. An RNA−Seq 

experiment requires special surface to which fragments with primers are 

attached. Nucleotides and enzyme are added to initiate bridge amplification. 

Several million of dense clusters of sequences are generated in each channel of 

the flow cell. In the last stage of the experiment all four labeled nucleotides are 

added (Bullard et al., 2010). After laser excitation, the image of emitted 

fluorescence from each cluster is captured. Markers are eluted and this cycle is 

repeated many times. The images make it possible to read the sequences and 

produce millions of short reads, which are typically mapped to a reference 

genome (Soneson and Delorenzi, 2013). Next generation sequencing requires  

a high-throughput platforms such as: Applied Biosystems’ SOLiD (technology 

based on sequencing by ligation), Illumina’s Genome Analyzer (technology 

based on sequencing by synthesis), Roche’s 454 Life Sciences (technology 

based on pyrosequencing), Ion Torrent (technology based on Ion 
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semiconductor), Pacific Biosciences (technology based on single-molecule real-

time sequencing) (Kvam et al., 2012). The main RNA−Seq data repository is 

SRA (Short Read Archive). This repository stores data in its own SRA format  

so that it can be searched for and downloaded in a convenient way. The basic 

and most commonly used extension of data from next-generation sequencing is 

FASTQ storing informations about read sequence and quality. The quality is 

calculated with the Phred Quality Score, follows 𝑄 = −10 log10 𝑝, where 𝑝 is 

the probability of a base call error. Smaller likelihood results in higher accuracy. 

A reference genome sequence is stored in FASTA format. 

3. Mapping 

Mapping and alignment constitute the first step in the RNA−Seq data 

analysis after checking the sequence quality and removing low quality reads in 

the image analysis. Millions of short reads obtained from the sequencing process 

must be turned into a quantification of expression. Read mapping makes it 

possible to find a region where a short read is identical to the reference genome. 

However, such matching may not be accurate. Short reads may be matched to 

several locations or can be derived from spliced regions, what may result in 

errors. Therefore, it is necessary to find the best location in the reference 

(Oshlack et al., 2010). Local mapping is possible using the Smith-Waterman 

algorithm, which compares small segments instead of looking at the total 

sequence. Similar to the Smith-Waterman algorithm is the BLAST search 

algorithm, which is, however, better in terms of speed. Mapping is possible 

using the Burrows-Wheeler transform or hash-tables. Mappers which have been 

recently available are: MAQ, SOAP, Bowtie, SHRiMP, BWA, TopHat, MIRA 

(Li et al., 2008; Flicek and Birney, 2009; Langmead et al., 2009). The first five 

mappers are  general aligners. TopHat is a de novo annotator and MIRA is a de 

novo transcript assembler. This option can be used to identify novel transcripts 

when reference genome is not available. Bowtie is based on the Burrows-

Wheeler transform. Summarizing mapped reads constitutes the next step in 

further analysis which relies on reads counting. 
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4. Statistical methods 

Let 𝐾𝑖𝑗 denote the observed count for gene 𝑖 = 1, … , 𝑛 and sample 𝑗 =

1, … , 𝑚. We assume that the read counts 𝐾𝑖𝑗 are derived from a Negative 

Binomial (NB) distribution, as follows: 

𝐾𝑖𝑗~𝑁𝐵(𝜇𝑖𝑗 , 𝜙), 

where 𝜇𝑖𝑗 is a mean, and 𝜙 is the dispersion. Mean and variance are related by 

𝜎𝑖𝑗
2 = 𝜇𝑖𝑗 + 𝜇𝑖𝑗

2 𝜙. Furthermore, let 𝑚𝑗 be the library size for sample 𝑗. We 

assume that 𝜇𝑖𝑗 = 𝜆𝑖𝑗𝑚𝑗, where 𝜆𝑖𝑗 is the level of gene expression (of gene 𝑖 

from sample 𝑗). To assess differences in differential expression levels between 

gene 𝑖 from sample 𝐴 and gene 𝑖 from sample 𝐵 (where, for instance, sample 𝐴 

may represent disease, and sample 𝐵 may represent control), the null hypothesis 

𝐻0: 𝜆𝑖𝐴 = 𝜆𝑖𝐵 is tested against a two-sided alternative hypothesis and it is made 

for each gene (Anders and Huber, 2010). The hypothesis concerning the 

differential expression is tested using exact test – edgeR and a similar approach 

in DESeq (Robinson et al., 2010; Anders and Huber, 2010; respectively) or 

empirical Bayes approach – EBSeq (Leng et al., 2013).  

5. Normalization 

Normalization is an essential step in the analysis of differentially expressed 

genes. It allows us to compare the expression between samples with regard to 

some technical effects from the sequencing. There are several normalization 

methods used for a count-based differential analysis: Reads per Kilobase per 

Million reads (RPKM), TotalCount, trimmed mean of M-values (TMM), 

Median, Quantile, Upper Quartile or relative log expression (RLE) (Dillies et 

al., 2012). The simplest normalization procedure is RPKM, which divides the 

gene count by the total number of reads in each library. In this study we use two 

methods of normalization: TMM and Median. DESeq estimates a scaling factor 

by the median of the ratio of the observed counts given a geometric mean across 

all the samples and interpreted as a pseudo-reference sample, as follows: 

𝑠̂𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖

𝐾𝑖𝑗

(∏ 𝐾𝑖𝑣
𝑚
𝑣=1 )1/𝑚

 . 
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A similar approach is used in EBSeq. The method included in DESeq 

package is based on the hypothesis that most genes are not differentially 

expressed. The method implemented in the edgeR package based on a similar 

assumption uses a weighted TMM (Robinson and Oshlack, 2010). This 

procedure establishes gene-wise log-fold-changes, as follows: 

𝑀𝑖𝑗 = log2 (
𝐾𝑖𝑗

𝑁𝑗

𝐾𝑖𝑗′

𝑁𝑗′
⁄ ), 

and the absolute expression level 

𝐴𝑖𝑗 =
1

2
log2 (

𝐾𝑖𝑗

𝑁𝑗
∗

𝐾𝑖𝑗′

𝑁𝑗′
), 

where 𝑁𝑗 is a total number of reads from sample 𝑗 (𝑁𝑗 = ∑ 𝐾𝑖𝑗
𝑛
𝑖=1 ). First, one 

sample (𝑗′) is selected as the reference and values 𝑀𝑖𝑗 and 𝐴𝑖𝑗 are calculated. 

Subsequently, some values 𝑀𝑖𝑗 and values 𝐴𝑖𝑗  are trimmed (Robinson and 

Oshlack, 2010; propose 30% values 𝑀𝑖𝑗 and 5% values 𝐴𝑖𝑗) and normalization 

factor for sample 𝑗 using the reference sample 𝑗′ is calculated as:  

log2(𝑇𝑀𝑀𝑗
𝑗′

) =
∑ 𝑤𝑖𝑗𝑀𝑖𝑗𝑖∈𝐺∗

∑ 𝑤𝑖𝑗𝑖∈𝐺∗
, 

where 𝐺∗ is the set of genes with not trimmed values of 𝑀𝑖𝑗 and 𝐴𝑖𝑗 and 𝑤𝑖𝑗 =
𝑁𝑗−𝐾𝑖𝑗

𝑁𝑗𝐾𝑖𝑗
+  

𝑁
𝑗′−𝐾𝑖𝑗

𝑁𝑗′𝐾𝑖𝑗
.  

6. Differential expression analysis 

6.1. Data 

In the analysis we take into consideration the datasets known from the 

literature. The data is presented in the form of a rectangular table of integer 

values, where genes correspond to rows and samples correspond to columns. 

Each cell of this table tells us how many reads have been mapped to some gene 

in some sample. The first dataset – ‘fly’ (Anders and Huber, 2010) includes 

counts from 17 605 genes in 4 samples. The second dataset – ‘pnas’ (Li et al., 
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2008) concerns RNA−Seq data from a treatment vs control experiment with 

relatively low biological variability (37 435 genes in 7 samples). 

6.2. DESeq, edgeR and EBSeq 

Three R packages: edgeR, DESeq and EBSeq have implemented methods 

based on the negative binomial model. EdgeR has been used primarily for serial 

analysis of gene expression (SAGE). This package requires the estimation of the 

dispersion parameter. Firstly, we use a common dispersion for all genes 

(Robinson and Smyth, 2008), and further this method estimates the tagwise 

dispersion for each gene. Both edgeR and DESeq estimate the variance 

assuming the linear relationship between variance and mean expression levels 

(Kvam et al., 2012). The first step in any analysis is usually reading the table of 

counts into an R session. Then we can work with each package and create its 

objects. In the DESeq central data structure is a CountDataSet(), and 

edgeR stores data in a list-based object called DGEList(). EBSeq requires that 

data should be loaded as a matrix. It is necessary to estimate the effective library 

size. It can be obtained in R by writing the following DESeq code: 

>cds1 <- estimateSizeFactors(cds) 

>sizeFactors(cds1), 

where cds is a DESeq CountDataSet object. EBSeq, simillary to DESeq, 

uses the median procedure to obtain the library size factor for each sample and it 

may be done via MedianNorm()function. In edgeR it may be obtained by 
calcNormFactors().  

After the normalization process we estimate the dispersions. In DESeq we 

can use functions:  

>cds2 <- estimateDispersions(cds) 

>str(fitInfo(cds2)) 

>plotDispEsts(cds2) 

The first line of the code estimates the dispersion value for each gene and 

fits a curve through the estimates. The second line stores information about the 

per-gene estimate, fitted curve and estimated values. The last line generates a 

plot of empirical and fitted dispersion values per-gene against the mean of 

normalized counts. The plot for ‘pnas’ data is shown in Figure 1.  

In this paper we focus on finding genes that are differentially expressed 

between two samples. In edgeR the testing can be done using the function 

exactTest(), in DESeq – using the function nbinomTest(), and in 

EBSeq – by the function EBTest(). The second function returns a data frame 

with useful information, e.g. the adjusted p-values, which are computed in such 

a way that the false discovery rate (FDR) is controlled at some level. 
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Fig. 1. Empirical and fitted dispersion values per-gene against the mean of normalized counts 

(DESeq; ‘pnas’ data) 

Table 1. Data frame with some information obtained with a differential expression test  

(DESeq (a), edgeR (b), ‘fly’ data) 

(a) DESeq 

gene id baseMean baseMeanA baseMeanB 
Fold 

Change 

log2Fold 

Change 
pval padj 

Gene_14350 1656.4268 0.0000 3312.8536 Inf Inf 5.69E-185 5.50E-181 

Gene_2090 675.2460 0.0000 1350.4920 Inf Inf 1.14E-139 5.50E-136 

Gene_16627 263.0968 524.7669 1.4267 0.0027 -8.5228 4.42E-86 1.42E-82 

Gene_11463 805.6701 1488.5990 122.7412 0.0825 -3.6003 5.25E-84 1.27E-80 

Gene_14906 1106.6140 1989.3712 223.8567 0.1125 -3.1517 9.21E-79 1.78E-75 

Gene_12596 154.4248 10.6986 298.1509 27.8681 4.8005 4.35E-36 7.01E-33 

(b) edgeR 

gene id logFC logCPM p-value FDR 

Gene_14350 14.70667751 6.372796573 1.02E-280 9.81E-277 

Gene_2090 13.41294393 5.080570537 2.56E-180 1.24E-176 

Gene_9780 -7.019562141 4.925005904 1.03E-121 3.33E-118 

Gene_16627 -8.306116176 3.719361236 1.57E-99 3.79E-96 

Gene_16573 5.94773123 4.079433516 3.07E-79 5.93E-76 

Gene_9774 -8.790872362 3.673782042 5.74E-78 9.25E-75 
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The data frame for ‘fly’ data in DESeq is presented in Table 1a. The 

‘baseMeanA’ and the ‘baseMeanB’ are the means of normalized counts calculated 

for each gene within sample A and sample B, the ‘baseMean’ is the mean of the 

‘baseMeanA’ and ‘baseMeanB’ values. The ‘foldChange’ is the ratio of 

‘baseMeanB’ to ‘baseMeanA’. A similar table can be obtained from edgeR (Table 

1b). The ‘logFC’ corresponds to log2 fold change of the genes, the ‘logCPM’ 

value is calculated as the counts divided by the library sizes and multiplied by one 

million. In EBSeq we may also get a list of differentially expressed genes.  

 
Fig. 2. Plot for genes identified as being differentially expressed (DESeq; ‘pnas’ data) 

By the function GetPPMat()we obtain a matrix containing the posterior 

probabilities of being equivalently expressed genes or differentially expressed 

genes. The graphical representation of the sixth column (‘log2FoldChange’) 

against the second column (‘baseMean’) from Table 1a, for example for ‘pnas’ 

data, is shown in Figure 2. The red points are genes which are significant at  

a 5% false discovery rate. 

A similar plot can be obtained in edgeR, which is shown in Figure 3.  

 
Fig. 3. Plot for genes identified as being differentially expressed (edgeR; ‘pnas’ data) 

In R it is possible to obtain information about the most significantly 

differentially expressed genes, but also about the most strongly down-regulated 

or up-regulated genes (Table 2). Numbers -1, 0 and 1 are for down-regulated, 

non-differentially expressed and up-regulated genes, respectively. The following 

line of code displays the number of genes significantly differentially expressed 

at a false discovery rate of 5%:  
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>length(which(res$padj<0.05)) 

 

Table 2. Down-regulated, non-differentially expressed genes, up-regulated  

(DESeq, edgeR, ‘pnas’ data) 

edgeR DESeq 

-1 0 1 -1 0 1 

2094 12060 2340 1270 13698 1526 

In this paper we have taken into consideration two data sets. For edgeR and 

DESeq, genes were recognized as differentially expressed with adjusted p-value 

lower than 0,05. For EBSeq, differentially expressed genes were selected with 

posterior probabilities greater than 0,95. The first set (‘fly’) consisted of 17 605 

genes, and the second one (‘pnas’) – of 37 435 genes. We compared packages in 

finding differentially expressed genes by the Venn diagram (Figure 4). We can 

see the number of differentially expressed genes detected by each method, and 

the number of commonly detected genes. For ‘fly’ data set, edgeR found 515 

differentially expressed genes, DESeq – nearly half as many, and EBSeq almost 

twice more than edgeR. 

(a) ‘fly’ data 

 

 

 

 

 

(b) ‘pnas’ data 

 

 

 

 

 

 

 

Fig. 4. Venn diagrams for differentially expressed genes for ‘fly’ data set (a)  

and ‘pnas’ data set (b) 
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7. Conclusion 

The paper has tried to make a brief review of the three statistical methods of 

detecting differentially expressed genes. All methods based on the negative 

binomial distribution are comparable. Both edgeR and DESeq produce p-values 

and adjusted p-values. EBSeq provides the posterior probability of being 

differential expression and each of them allows us to control the FDR rate. 

During the normalization process, edgeR uses a trimmed mean of M-values 

between each pair of samples, whereas DESeq and EBSeq use median 

normalization. The analyses were performed in DESeq, edgeR and EBSeq, 

which are a packages for the statistical environment R and are available from a 

Bioconductor repository. These packages have implemented functions useful in 

assessing the results of the RNA−Seq experiment. Gene expression measured by 

the number of reads mapped to a reference genome helps to understand the 

impact of these genes on certain diseases and cellular processes. We have tested 

differential expression within a pairwise comparison. EdgeR and EBSeq are the 

methods for analyzing the data involving two or more samples with replicates. 

DESeq can be applied in analyzing data from an experiment without replicates. 

A comprehensive description of the above mentioned methods as well as other 

methods for detecting differentially expressed genes may be found in Soneson 

and Delorenzi (2013). 
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