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Summary 

In this paper the problem of indicating chemical balance weighing designs providing that 

they satisfy the criterion of D-optimality is considered. Moreover, we study such designs under 

assumption that the measurements are equal positive correlated or uncorrelated and they have the 

same variances. We give new method of construction of D-optimal designs. They are based on the 

set of the incidence matrices of the balanced bipartite weighing designs. Theoretical research is 

illustrated by examples. 
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1. Introduction 

Let us consider an experiment where unknown measurements of p  objects 

are determined in n  weighing operations. In practice, however, it may not be 

possible to take all objects in each measurement operation. Let us assume that at 

most m  n  objects can be included in each measurement. Assume further that 
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the results of measurements are described by the model eXwy  , where y  

is an 1n  random vector of the observations,   pwww ,...,, 21w  is a vector 

representing unknown measurements of objects,  1,0,1,   mpnΦX , where 

 1,0,1,  mpnΦ  denotes the class of pn  matrices having entries 1,1ijx  

or 0 when object is measured on the left pan, right pan or is not included in 

weighting operation, respectively. Therefore, m is the maximal number of 

elements equal to 1 and -1 in each column of the matrix X . Throughout the 

paper we assume that e  is an 1n  random vector of errors and   n0e E , 

  Ge
2Var  , where 

    10,01 '  g,g nnn 11IG .  (1.1) 

Note that for 10   and 0g  the matrix G  is positive definite. If the 

matrix X  is of full column rank, then all jw , pj ,...,2,1 , are estimable and 

the variance matrix of the best linear unbiased estimator   yGXXGXw
1'11'ˆ   

is equal to     11'2ˆVar
 XGXw . The matrix XGXM

1  is called the 

information matrix of the design X .  

Some problems related to the chemical balance weighing designs are 

presented in Banerjee (1975). The applications of such designs in optics are 

shown in Koukouvinos and Seberry J. (1997), whereas in experiments with 

microarrays in Banerjee and Mukerjee (2007). 

In the literature a few optimality criteria minimizing some functions of 

matrix M  are considered. One of them is D-optimality. We say that the design 

DX  is called D-optimal in the class of all possible design matrices 

 1,0,1,  mpnΦ  if  

       1,0,1:detmindet ,
1  


mpnD ΦXMX .  (1.2) 

If  DXdet  attains the lowest bound then the design is called regular  

D-optimal. In other cases it is called D-optimal. We note, each regular  

D-optimal design is D-optimal and the inverse sentence may not be true. The 

concept of D-optimality was considered in Raghavarao (1971), Shah and Sinha 

(1989). For the case 
nIG  , Jacroux et al. (1983) presented the problems 

related to the D-optimality of weighing designs.  
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Ceranka and Graczyk (2014) formulated the definition of the regular  

D-optimal chemical balance weighing design and they proved the theorem 

presenting the conditions determining regular D-optimal designs for the case 

10  . The definition and theorem are as follows. 

Definition 1.1. Any chemical balance weighing design  1,0,1,   mpnΦX  

with the covariance matrix of errors G
2 , 10  , is regular D-optimal if 

    p

m

g







 
 1

det 1
M . 

Theorem 1.1. Any chemical balance weighing design  1,0,1,   mpnΦX  

with the covariance matrix of errors G
2 , where G  is given by (1.1), is regular 

D-optimal if and only if 

(i) pmIXX '
 if 0 , 

(ii) pmIXX '
 and pn 01X '

 if 10  . 

2. The construction 

Some constructions of regular D-optimal designs were given in Masaro and 

Wong (2008) and Katulska and Smaga (2013) for the case of  1,1  pnΠX , 

where  1,1 pnΠ  denotes the class of pn  matrices having entries 1ijx  

or 1. Ceranka and Graczyk (2014) considered the problem of optimality in 

weighing designs for the case  1,0,1,   mpnΦX . In this Section we give new 

construction based on the set of the incidence matrices of balanced bipartite 

weighing designs. Some elementary properties of these designs are given in 

Huang (1976). The advantage of using balanced bipartite weighing designs lies 

in the fact that based on their incidence matrices we are able to construct the 

matrix  1,0,1,   mpnΦX  satisfying optimality criterion.  

A balanced bipartite weighing design there is an arrangement of v  

treatments into b  blocks in such a way that each block containing k  distinct 

treatments is divided into 2 subblocks containing 1k  and 2k  treatments, 

respectively, where 21 kkk  . Each treatment appears in r  blocks, moreover 

each pair of treatments from different subblocks appears together in 1  blocks 
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and each pair of treatments from the same subblock appears together in 2  

blocks. The integers v , b , r , 1k , 2k , 1 , 2  are called the parameters of the 

balanced bipartite weighing design and satisfy the following equalities 

 

bkvr  ,    
 

21

1

2

1

kk

vv
b


 ,   

    

21

22111
2

2

11

kk

kkkk 
 ,   

 

21

1

2

1

kk

vk
r


 . 

Let *

hN  be the incidence matrix of balanced bipartite weighing design with 

the parameters v , hb , hr , hk1 , hk2 , h1 , h2 , th ,...,2,1 . From *

hN  we obtain 

another matrix 
hN  by replacing hk1  unities equal to +1 of each column which 

correspond to the elements belonging to the first subblock by 1 . Accordingly, 

each column of the matrix 
hN  will contain hk1  elements equal to 1 , hk2  

elements equal to 1 and 
hh kkv 21   elements equal to 0. Let 

 1,0,1,   mpnΦX  be the design matrix of the chemical balance weighing 

design of the form 

   tNNNX 21 .  (2.1) 

Clearly, such form of the design implies that in each weighing, from vp   

objects, exactly 
hh kkk 21    th ,...,2,1  objects are taken to the 

measurements, where hk1  of them with factor 1  and 
hk2
 with factor +1. Also, 

each object is weighted 



t

h

hrm
1

 times in the 



t

h

hbn
1

 weighing operations.  

Lemma 2.1. The chemical balance weighing design with the design matrix 

 1,0,1,   mpnΦX  given by (2.1) is nonsingular if and only if  

 hh kk 21    (2.2) 

for at least one th ,...,2,1 . 
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Proof. If the matrix G  is positive definite then the matrix M  is nonsingular if 

and only if XX
'  is nonsingular. Under the assumption that G  is of the form 

(1.1), for the design  1,0,1,   mpnΦX  given in the form (2.1), we have  

     '

1

12

1

12

'

vv

t

h

hhv

t

h

hhhr 11IXX 
















 



.  (2.3) 

In this way we obtain that 

        
















 







t

h

hhh

v
t

h

hhh vrr
1

12

1

1

12

' 1det XX .  (2.4) 

The determinant (2.4) equals 0 if and only if  

  



t

h

hh

t

h

hr
1

12

1

  (2.5) 

or 

     



t

h

h

t

h

hh rv
11

121 .  (2.6) 

Using the relations between parameters of the balanced bipartite weighing 

designs (see Huang, 1976) it can be shown that (2.5) implies 

   



t

h

hh

t

h

hh kkkkv
1

2

21

1

21 , which is not satisfied, because 
hh kkv 21  , 

th ,...,2,1 . Under the relations between parameters of the balanced bipartite 

weighing designs, we can see that (2.6) implies   0
2

21  hh kk  for each 

th ,...,2,1 . The last expression does not hold if and only if hh kk 21   for at 

least one th ,...,2,1 , that finishes the proof.  ■ 

From Theorem 1.1 we can see that the optimality conditions depend on the 

parameter   in (1.1). This implies that the methods of construction of the 

design  1,0,1,   mpnΦX  are depended on  , either. Therefore, next 

theorem ensures the existence of optimal designs.  
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Theorem 2.1. Let 0 . Any nonsingular chemical balance weighing design 

 1,0,1,   mpnΦX  given by (2.1) with the covariance matrix of errors 
ngI

2 , 

is regular D-optimal if and only if 

   0
1

12 


t

h

hh
.  (2.7) 

Proof. For the design  1,0,1,   mpnΦX  in the form (2.1), the condition (2.3) 

is satisfied. From this it follows that condition (2.7) is fulfilled which is the 

desired conclusion.     ■ 

We can certainly assume that 012  hh   for each th ,...,2,1 . 

Therefore under assumptions of Theorem 2.2 we obtain the following corollary. 

Corollary 2.1. Any nonsingular chemical balance weighing design 

 1,0,1,   mpnΦX  given by (2.1)  with the covariance matrix of errors 

ngI
2  is regular D-optimal if and only if  hh 12   for each th ,...,2,1 . 

We recall the following theorem given by Ceranka and Graczyk (2005) that 

will need in further considerations.  

Theorem 2.2. If in the balanced bipartite weighing design  15.01  ssk  and 

 15.02  ssk , ,...3,2s , then 21  . 

Summarizing, we can use the series of balanced bipartite weighing designs 

given by Huang (1976) and Ceranka and Graczyk (2005) and we can formulate 

the following theorem. 

Theorem 2.3. The existence of the balanced bipartite weighing design with the 

parameters v , 
 
 1

12
22 




ss

vuv
bh

, 
 

1

12
2 




s

vu
rh

, 
 

2

1
1




ss
k h

, 
 

2

1
2




ss
k h

, 

h1 = uh 2
, ,...3,2s , ,...2,1u , implies the existence of the regular D-

optimal chemical balance weighing design  1,0,1,   mpnΦX  given by (2.1) 

with the covariance matrix of errors 
ngI

2 .  

Proof. It is easy to verify that the parameters of balanced bipartite weighing 

designs satisfy the condition (2.7).    ■ 
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It is worth pointing out that there is a big number of receivable 

combinations between parameters of the balanced bipartite weighing designs for 

that the condition h1 = h2 , th ,...,2,1 , holds. For that reason we have many 

possible constructions of the regular D-optimal chemical balance weighing 

design  1,0,1,   mpnΦX  for given vp   and 



t

h

hbn
1

.  

For 1t , the method of construction of  1,0,1,   mpnΦX  was given by 

Ceranka and Katulska (1999). 

Our next claim is the case 2t . In this case, the list of parameters of the 

balanced bipartite weighing design under the restrictions 25v , 50hb , 

16,9,421  hh kk , when hh 21  , 2,1h , is given in Ceranka and Graczyk 

(2002). The condition (2.7) implies that  

 21111222  .  (2.8) 

We check at once that if the parameters of two balanced bipartite weighing 

designs satisfy the condition (2.8), then the chemical balance weighing design 

 1,0,1,   mpnΦX  given by (2.1) is regular D-optimal. We formulate 

theorem presenting the parameters of balanced bipartite weighing designs that 

satisfy the condition (2.8).  

2.1. The case 0  

Theorem 2.4. Let 0 . The existence of the balanced bipartite weighing 

design with the parameters  

(i) 12  sv ,  121  ssb , sr 31  , 111 k , 221 k , 211  , 121   and 

12  sv ,  122  ssb , sr 72  , 212 k , 522 k , 1012  , 

,1122   ,...4,3s ,  

(ii) 12  sv ,  121  ssb , sr 61  , 211 k , 421 k , 811  , 721   

and 12  sv ,  122  ssb , sr 72  , 212 k , 522 k , 1012  , 

1122  , ,...4,3s ,  
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(iii) 14  sv ,  141  ssb , sr 41  , 211 k , 221 k , 211  , 121   

and 14  sv ,  142  ssb , sr 52  , 112 k , 422 k , 212  , 

322  , ,...2,1s ,  

(iv) 14  sv ,  141  ssb , sr 41  , 211 k , 221 k , 211  , 121   

and 14  sv ,  1422  ssb , sr 142  , 212 k , 522 k , 1012  , 

1122  , ,...3,2s ,  

(v) 14  sv ,  141  ssb , sr 51  , 211 k , 321 k , 311  , 221   

and 14  sv ,  142  ssb , sr 52  , 112 k , 422 k , 212  , 

322  , ,...3,2s ,  

(vi) 14  sv ,  141  ssb , sr 51  , 211 k , 321 k , 311  , 221   

and 14  sv ,  1422  ssb , sr 142  , 212 k , 522 k , 1012  , 

1122  , ,...3,2s ,  

(vii) 14  sv ,  1421  ssb , sr 61  , 111 k , 221 k , 211  , 121   

and 14  sv ,  142  ssb , sr 52  , 112 k , 422 k , 212  , 

322  , ,...2,1s ,  

(viii) 14  sv ,  1421  ssb , sr 121  , 211 k , 421 k , 811  , 

721   and 14  sv ,  142  ssb , sr 52  , 112 k , 422 k , 

212  , 322  , ,...3,2s ,  

(ix) 14  sv ,  1421  ssb , sr 161  , 311 k , 521 k , 1511  , 

1321   and 14  sv ,  142  ssb , sr 82  , 212 k , 622 k , 

612  , 822  , ,...3,2s , 
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(x) 110  sv ,  11051  ssb , sr 121  , 211 k , 421 k , 811  , 

721   and 110  sv ,  1102  ssb , sr 62  , 112 k , 522 k , 

112  , 222  , ,...2,1s ,  

(xi) 110  sv ,  11051  ssb , sr 151  , 111 k , 221 k , 211  , 

121   and 110  sv ,  1102  ssb , sr 62  , 112 k , 522 k , 

112  , 222  , ,...2,1s ,  

(xii) 120  sv ,  12051  ssb , sr 201  , 211 k , 221 k , 211  , 

121   and 120  sv ,  12022  ssb , sr 122  , 112 k , 522 k , 

112  , 222  , ,...2,1s ,  

(xiii) 120  sv ,  12051  ssb , sr 251  , 211 k , 321 k , 311  , 

221   and 120  sv ,  12022  ssb , sr 122  , 112 k , 522 k , 

112  , 222  , ,...2,1s ,  

(xiv) sv 6 ,  1661  ssb ,  1631  sr , 111 k , 221 k , 411  , 

221   and sv 6 ,  1662  ssb ,  1672  sr , 212 k , 522 k , 

2012  , 2222  , ,...3,2s ,  

implies the existence of the regular D-optimal chemical balance weighing 

design  1,0,1,   mpnΦX  given by (2.1) with the covariance matrix of errors 

ngI
2 . 

Proof. The parameters of the balanced bipartite weighing design (i)-(xiv) satisfy 

the condition (2.8).   ■ 
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2.2. The case 10   

Theorem 2.5. Let 10   and hh kk 21  , th ,...,2,1 . Any chemical balance 

weighing design  1,0,1,   mpnΦX  given by (2.1) with the covariance matrix 

of errors G
2 , where G  is given by (1.1) is regular D-optimal if and only if 

(2.7) holds and 

 





 t

h h

h
t

h h

h

kk 1 1

1

1 2

1

22
.  (2.9) 

Proof. For the design  1,0,1,   mpnΦX  in the form (2.1), from Theorem 2.2 

we have (2.7). Since 10   then from Theorem 2.1 we have 
pn 01X ' , i.e. 

in each column the number of elements equal to 1  is equal to the number of 

elements equal to 1. For 
hh kk 21  , 

 

h

h
h

k

v
r

2

1
1

2

1
  and 

 

h

h
h

k

v
r

1

1
2

2

1
 , 

th ,...,2,1 , are the numbers of elements equal to 1  and 1 in each column of 

'
hN . Hence we have (2.9).     ■ 

There is a big number of combinations between the parameters of the 

balanced bipartite weighing designs for that the conditions (2.7) and (2.9) hold. 

Thus, we have many possible constructions of the design  1,0,1,   mpnΦX  

of the regular D-optimal chemical balance weighing design for given number of 

objects vp   and measurements 



t

h

hbn
1

.  

Let us consider the case 1t . The conditions (2.7) and (2.9) imply that 

21   and 21 rr  . From the last one condition it follows that 
21 kk  . But, 

when 21 kk   we are not able to calculate 
1r  and 

2r . For that reason we 

formulate the following theorem.  

Theorem 2.6. If 10   then regular D-optimal chemical balance weighing 

design  1,0,1,   mpnΦX  of the form 
'

NX   with the covariance matrix of 

errors G
2 , where G  is given by (1.1), N  is constructed from 

*
N  the 

incidence matrix of the balanced bipartite weighing design as is described 

above, does not exist. 
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Let us consider the case 2t . Here and subsequently the existence of the 

balanced bipartite weighing design with the parameters 1v , 1b , 1r , 11k , 21k , 

,11 21  implies the existence of the balanced bipartite weighing design with the 

parameters 12 vv  , 12 bb  , 12 rr  , 2112 kk  , 1122 kk  , 1112  , 2122  . 

Thus we have the following theorem. 

Theorem 2.7. Let 10  . For any v , the existence of the balanced bipartite 

weighing design with the parameters v , 1b , 1r , 11k , 21k , 11 , 21  for which 

2111 kk   and v , 12 bb  , 12 rr  , 2112 kk  , 1122 kk  , 1112  , 2122   

implies the existence of regular D-optimal chemical balance weighing design 

 1,0,1,   mpnΦX  in the form (2.1) with the covariance matrix of errors 

G
2 , where G  is given by (1.1).  

Proof. It is easy to show that for the parameters of the balanced bipartite 

weighing design given in above theorem, the conditions (2.7) and (2.9) hold.   ■ 

Based on the result given in Theorem 2.7 let us consider  

 











'

'

h

h
h

N

N
X . (2.10) 

Then for each th ,...,2,1 , the condition 
pbh 01X 2

'  is always true.  

Theorem 2.8. Let 10  . For any h , th ,...,2,1 , the existence of the 

balanced bipartite weighing design with the parameters tv  , 
 
 1

12
22 




ss

tut
bh

, 

 
1

12
2 




s

tu
rh

, 
 

2

1
1




ss
k h

, 
 

2

1
2




ss
k h

,  h1 uh 2
, ,...2,1u , 

,...3,2s , ,...4,3t , implies the existence of regular D-optimal chemical 

balance weighing design  1,0,1,   mpnΦX  in the form (2.1) for 
hX  in 

(2.10) with the covariance matrix of errors G
2 , where G  is given by (1.1).  

Proof. It is easy to verify that for  1,0,1,   mpnΦX , if the parameters of the 

balanced bipartite weighing designs are given as above then they fulfill the 

conditions (2.7) and (2.9). ■ 
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3. Examples 

To illustrate the theory given in the previous section let us consider two 

experiments where unknown measurements of 5 vp  objects are determined 

in 20n  measurement operations. Among all possible variance matrices G
2  

we take two 
ngIG   for 0  and   '1 nnng 11IG   for 0g , 

10  . 

3.1. The case 0  

Let 0 . We assume that each object can be measured 17m  times. We 

choose the design matrix X  among many at our disposal in the class 

 1,0,117,520 Φ  in such a manner that X  is regular D-optimal. Under 

conditions stated above the design  1,0,117,520  ΦX  in the form (2.1) could 

be constructed from three incidence matrices of balanced bipartite weighing 

designs with the parameters 5v , 101 b , 81 r , 111 k , 321 k , 311  , 

321   and  

























0111101111

1011110111

1101111011

1110111101

1111011110

22121222

22212122

12222212

21222221

22121222

*

1N , 

where 11  and 21  denote that the object exists in the first or in the second 

subblock, respectively, 0  the object does not exist in the block, 5v , 52 b , 

42 r , 212 k , 222 k , 212  , 122   and 5v , 53 b , 53 r , 113 k , 

423 k , 213  , 323  , where  

























1222

1112

2212

2121

1211

*

2

11110

11101

11011

10111

01111

N , 

























12222

22222

21122

22212

22221

*

3

11111

11111

11111

11111

11111

N . 

In each incidence matrix of balanced bipartite weighing design we replace the 

elements that are equal to 1 and correspond to elements belonging to the first 
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subblock  11  by 1 . As the next step we built design  1,0,117,520  ΦX  in 

the form (2.1) for 3t  



































11111111100111101111

11111111011011110111

11111110111101111011

11111101111110111101

11111011111111011110

'
X

and for this design 
5

' 17IXX   and  
5

11'

17
det 










 g
XGX . 

3.2. The case 10   

Let 10  . Let assume that each object can be measured 12m  times. 

We choose the design matrix X  among many at our disposal in the class 

 1,0,112,520 Φ  in such a manner that X  is regular D-optimal. The design 

 1,0,112,520  ΦX  in the form (2.1) could be constructed from two incidence 

matrices of balanced bipartite weighing designs with the parameters 5v , 

101 b , 61 r , 111 k , 221 k , 211  , 121   and 5v , 102 b , 62 r , 

212 k , 122 k , 212  , 122    

























222121

221221

122221

122212

112222

*

1

1101011100

1011100110

1110010011

0011111001

0100101111

N ,  
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N  

As the next step we built design  1,0,117,520  ΦX  in the form (2.1) for 

2t  and for this design 
5

' 12IXX   and     5
11'

12

1
det 







 


 g
XGX , where 
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.

11010111001101011100

10111001101011100110

11100100111110010011

00111110010011111001

01001011110100101111

'


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