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Summary 

The chemical balance weighing designs satisfying the criterion of D-optimality under 

assumption that the measurements are negative correlated and they have the same variances are 

considered. We present new method of construction of D-optimal designs based on the set of the 

incidence matrices of the balanced bipartite weighing designs. Besides, we give an examples of 

the design matrix 
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1. Introduction 

Suppose, we determine unknown measurements of p  objects using n  

weighing operations. The results of this experiment can be described by the 

model eXwy  , where  

(i) y  is an 1n  random vector of the observations,  
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(ii)   pwww ,...,, 21w  is a vector representing unknown 

measurements of objects,  

(iii)  1,0,1,   mpnΦX , where  1,0,1,  mpnΦ  denotes the class of 

pn  matrices having entries 1,1ijx  or 0,  

(iv) m  is the maximum number of elements equal to 1 and 1  in each 

column of the matrix X , 

(v) e  is the 1n  random vector of errors. We shall make two standing 

assumptions on the maps of our considerations:   n0e E  and 

  Ge
2Var  , where  

    0
1

1
,01 ' 






n
g,g nnn 11IG .  (1.1) 

In the case where 











 0,
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1

n
 and 0g ,G  is positive definite. So, if 

the matrix X  is of full column rank, then using the weighted lest squares 

method we obtain the best linear unbiased estimator   yGXXGXw
1'11'ˆ   

with the variance matrix     11'2ˆVar
 XGXw . The matrix XGXM

1'   is 

called the information matrix of the design X .  

The optimality problem is concerned with efficient estimation in some 

sense by a proper choice of the design matrix X . There are many possible 

optimality criteria. One of them is D-optimality. This optimality criterion 

minimizes the determinant of the matrix 1
M . The design DX  is called  

D-optimal in the class of all possible design matrices  1,0,1,  mpnΦ  if 

      1,0,1:detmindet ,

1  



mpnD ΦXMX . If  DXdet  attains the lowest 

bound then the design is called regular D-optimal. In other cases it is called  

D-optimal. The research related to D-optimality was presented for instance in 

Raghavarao (1971), Shah and Sinha (1989). Some results concerned on the 

regular D-optimal chemical balance weighing designs are given in literature 

including Gail and Kiefer (1982), Jacroux et al. (1983), Chadjiconstantinidis and 

Chadjipadelis (1994), Koukouvinos (1996), Abrego et al. (2003), Masaro and 

Wong (2008) ones.  
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Ceranka and Graczyk (2014a) gave the definition of the regular D-optimal 

chemical balance weighing design and the conditions determining regular  

D-optimal design for 
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Definition 1.1. Let 
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n
. Any chemical balance weighing design 

 1,0,1,   mpnΦX  with the covariance matrix of errors G
2 , where G  is 

given by (1.1), is regular D-optimal if 
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1det M , where  puuuu ,...,,min 21 , ju  

represent the number of elements equal to 1  in j th column of X , 

pj ,...,2,1 . 

Theorem 1.1. Any chemical balance weighing design  1,0,1,   mpnΦX  

with the covariance matrix of errors G
2 , where G  is given by (1.1), is regular 

D-optimal if and only if  
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   (1.2) 

 pn z1X '
,  (1.3) 

where pz  is 1p  vector for which the j th element is equal to  um 2  or 

um 2 , pj ,...,2,1 .  

2. The construction 

For  1,1  pnΠX , where  1,1 pnΠ  denotes the class of pn  

matrices having entries 1ijx  or 1, some constructions of regular D-optimal 

designs were given in Masaro and Wong (2008). In more extensive class of the 
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design matrices  1,0,1,  mpnΦ , the problem of optimality in weighing 

designs was considered in Ceranka and Graczyk (2014a). 

In this Section we present new method of construction of the regular  

D-optimal chemical balance weighing design based on the set of the incidence 

matrices of balanced bipartite weighing designs. This construction was 

motivated by the properties of such designs. For a deeper discussion of such 

designs we refer the reader to Huang (1976). Let 
*

hN   th ,...,2,1 , be the 

incidence matrix of balanced bipartite weighing design with the parameters v , 

hb , hr , 
hk1

, hk2 , h1 , 
h2 . From 

*

hN  we form the matrix hN  by replacing hk1  

unities equal to +1 of each column which correspond to the elements belonging 

to the first subblock by 1 . Then each column of the matrix hN  will contain 

hk1
 elements equal to 1 , 

hk2
 elements equal to 1 and 

hh kkv 21   elements 

equal to 0. Let  1,0,1,   mpnΦX  be the design matrix of the chemical 

balance weighing design in the form 

   '

21 tNNNX  .  (2.1) 

Therefore in such design we determine unknown measurements of vp   

objects in 



t

h

hbn
1

 measurement operations, each object is weighted 



t

h

hrm
1

 

times.  

The result given by Ceranka and Graczyk (2014b) will be needed for next 

considerations. 

Lemma 2.1. The chemical balance weighing design with the design matrix 

 1,0,1,   mpnΦX  given by (2.1) is nonsingular if and only if  

 hh kk 21    (2.2) 

for at least one th ,...,2,1 . 

Without loss of generality, we can assume that 
hh kk 21   for each h . Then 
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1
 , th ,...,2,1 , are the numbers of elements 

equal to 1  and 1 in each column of '

hN . We will work under this assumption. 
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Ceranka and Graczyk (2014a) gave the condition determining regular D-optimal 

design for the case 
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1

1

n
. 

From Theorem 1.1 we can see that the optimality conditions are depended 

on the parameter   in (1.1). This implies that the methods of construction of the 

design  1,0,1,   mpnΦX  are depended on  , either. Therefore we will 

formulate our main result that provides criteria of the regular D-optimal designs.  

Theorem 2.1. Let 
hh kk 21   for each th ,...,2,1 . Any chemical balance 

weighing design  1,0,1,   mpnΦX  in the form (2.1) with the covariance 

matrix of errors G
2 , where G  is given by (1.1), is regular D-optimal if and 

only if the following conditions are simultaneously satisfied 
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,  (2.3) 
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,  (2.4) 
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t
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hh rr .  (2.5) 

Proof. From Theorem 1.1 it follows that if 
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n
 then chemical balance 

weighing design is regular D-optimal if the conditions (1.2) and (1.3) hold. 

From 
pn z1X '  we have umnj 2'' 1Xc  or  um 2 , ,,...,2,1 pj   where 
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jc  is the j th column of matrix 

pI . From the condition 
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consequently from (1.3) we get  
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XcXc . Then 
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 and thus we have (2.3). Moreover, under the 

condition (2.4), the denominator of (2.3) is greater than zero, hence 0 . Since 

(2.5) then 











 0,

1

1

n
. If (2.5) is not fulfilled then   1

1


 n  and in that 

case the matrix G  is not positive definite. This completes the proof.      ■ 

Theorem 2.2. Let 1t . If for a given  , the parameters of the balanced 

bipartite weighing design are equal to  

(i)   12 1241082


 ss , sv 6 ,  1661  ssb ,  1631  sr , 

11 k , 22 k , 41  , 22  , ,...2,1s ,  

(ii)   12 14


 ss , 12  sv ,  121  ssb , sr 81  , 31 k , 

52 k , 151  ,  132  , ,...5,4s ,  

(iii)   12 13


 ss , 12  sv ,  121  ssb , sr 31  , 11 k , 

22 k , 21  , 12  , ,...3,2s , except the case 5s , 

(iv)   12 15


 ss , ,14  sv  ,141  ssb ,51 sr   ,21 k ,32 k

,31   ,22  ,...,3,2s  

(v)   ,16
12 

 ss ,12  sv  ,121  ssb ,61 sr  ,21 k ,42 k

,81  ,72  ,...,4,3s  

(vi)   12 56


 ss , sv 2 ,  121  ssb ,  1231  sr , 21 k , 

42 k , 81  , 72  , ,...4,3s ,  
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then the chemical balance weighing design  1,0,1,   mpnΦX  in the form 

(2.1) with the covariance matrix of errors G
2 , where G  is given by (1.1),  

is regular D-optimal. 

Proof. The proof is immediate by observing that the parameters given in (i)-(vi) 

satisfy the conditions (2.3)-(2.5).     ■ 

Theorem 2.3. Let 2t . If for a given  , the parameters of the balanced 

bipartite weighing design are equal to  

(i)   ,1213063
12 

 ss  sv 6 ,  1661  ssb ,  1631  sr , 

,111 k  ,221 k  ,411  , 221  , and sv 6 ,  1632  ssb , 

 1632  sr , 212 k , 422 k , 812  , 722  , ,...2,1s ,  

(ii)          122
11166216122



 tssst , sv 6 , 

 1661  ssb ,  1631  sr , 111 k , 221 k , 411  , 221   and 

sv 6 ,  1662  stsb ,  1642  str , 112 k , 322 k , t612  , 

t622  , ,...2,1, ts , 

(iii)          122
1316221612



 tssst , sv 6 , 

 1661  ssb ,  1631  sr , 111 k , 221 k , 411  , 221   and 

sv 6 ,  1622  stsb ,  1632  str , 312 k , 622 k , t1212  , 

t1222  , ,...2,1, ts , 

(iv)   12 127


 ss , 12  sv ,  121  ssb , sr 81  , 311 k , 

521 k , 1511  , 1321   and 12  sv ,  122  ssb , sr 32  , 

112 k , 222 k , 212  , 122  , ,...7,6s , 



64 BRONISŁAW CERANKA, MAŁGORZATA GRACZYK 

 

(v)   12 39613


 ss , 14  sv ,  1421  ssb , sr 161  , 

311 k , 521 k , 1511  , 1321   and 14  sv ,  142  ssb , 

sr 52  , 212 k , 322 k , 312  , 222  , ,...3,2s , 

(vi)   12 36283


 ss , 12  sv ,  121  ssb , sr 81  , 311 k , 

521 k , 1511  , 1321   and 12  sv ,  122  ssb , sr 62  , 

212 k , 422 k , 812  , 722  , ,...5,4s , 

(vii)   12 3361


 ss , 14  sv ,  1421  ssb , sr 161  , 311 k , 

521 k , 1511  , 1321   and 14  sv ,  142  ssb , sr 52  , 

112 k , 422 k , 212  , 322  , ,...3,2s , 

(viii)   12 16256


 ss , 110  sv ,  11051  ssb , sr 401  , 

311 k , 521 k , 1511  , 1321   and 110  sv ,  1102  ssb , 

sr 62  , 112 k , 522 k , 112  , 222  , ,...2,1s , 

(ix)   12 1229


 ss , 12  sv ,  121  ssb , sr 81  , 311 k , 

521 k , 1511  , 1321   and 12  sv ,  122  ssb , sr 72  , 

212 k , 522 k , 1012  , 1122  , ,...5,4s , 

(x)        1
222 111212



 tststs , 12  sv , 

 121  ssb , sr 81  , 311 k , 521 k , 1511  , 1321   and 

12  sv ,  122  stsb , tsr 42  , 112 k , 322 k , t312  , 

t322  , ,...5,4s , ,...2,1t , 
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(xi)        122 11212232


 ststs , 12  sv , 

 121  ssb , sr 81  , 311 k , 521 k , 1511  , 1321   and 

12  sv ,  122  stsb , tsr 92  , 312 k , 622 k , t1812  , 

t1822  , ,...5,4s , ,...2,1t , 

(xii)       122 111212


 tssts , 12  sv ,  121  ssb , 

sr 31  , 111 k , 221 k , 211  , 121   and 12  sv , 

 122  stsb , tsr 42  , 112 k , 322 k , t312  , t322  , 

,...3,2s , ,...2,1t , except the case 5s , 

(xiii)       122 111213


 tssts , 12  sv ,  121  ssb , 

sr 31  , 111 k , 221 k , 211  , 121   and 12  sv , 

 122  stsb , tsr 92  , 312 k , 622 k , t1812  , t1822  , 

,...3,2s , ,...2,1t , except the case 5s , 

(xiv)       122 1121414


 tssts , 14  sv ,  141  ssb , 

sr 51  , 211 k , 321 k , 311  , 221   and 14  sv , 

 1422  stsb , tsr 82  , 112 k , 322 k , t312  , t322  , 

,...3,2s , ,...2,1t , 

(xv)       122 111413


 tssts , 14  sv ,  141  ssb , 

sr 51  , 211 k , 321 k , 311  , 221   and 14  sv , 

 142  stsb , tsr 92  , 312 k , 622 k , t912  , t922  , 

,...3,2s , ,...2,1t , 
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(xvi)       122 1112134


 tssts , 12  sv ,  121  ssb , 

sr 61  , 211 k , 421 k , 811  , 721   and 12  sv , 

 122  stsb , tsr 42  , 112 k , 322 k , t312  , t322  , 

,...4,3s , ,...2,1t , 

(xvii)       122 111223


 tssts , 12  sv ,  121  ssb , 

sr 61  , 211 k , 421 k , 811  , 721   and 12  sv , 

 122  stsb , tsr 92  , 312 k , 622 k , t1812  , t1822  , 

,...4,3s , ,...2,1t , 

(xviii)         122
112121212



 tssts , sv 2 , 

 121  ssb ,  1231  ssr ,  211 k , 421 k , 811  , 

721   and sv 2 ,  1222  stsb ,  1242  str , 112 k , 

322 k , t612  , t622  , ,...4,3s , ,...2,1t , 

then the chemical balance weighing design  1,0,1,   mpnΦX  in the form 

(2.1) with the covariance matrix of errors G
2 , where G  is given by (1.1),  

is regular D-optimal. 

Proof. One can easily check that the parameters given in (i)-(xviii) fulfilled the 

conditions given in Theorem 2.1.         ■ 

3. Examples 

Let us consider the experiment where unknown measurements of 5 vp  

objects in 10n  measurement operations are estimated. We assume that each 

object can be measured 6m  times. Suppose that the errors of measurements 

are negative correlated and have the same variances, so 







 '

13

1

13

14
nnng 11IG . 
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In this way we determine the regular D-optimal design in the class 

 1,0,16,510 Φ . The design  1,0,16,510  ΦX  in the form (2.1) can be 

constructed from the incidence matrix of balanced bipartite weighing designs 

with the parameters 5v , 10b , 6r , 11 k , 22 k , 21  , 12   (see, 

Theorem 2.3 (iii)) and  

























222121

221221

122221

122212

112222

*

1101011100

1011100110

1110010011

0011111001

0100101111

N , 

where 
11  and 21  denote that the object exists in the first or in the second 

subblock, respectively, 0  if the object does not exist in the block. In each 

incidence matrix of balanced bipartite weighing design we replace the elements 

that are equal to 1 and correspond to elements belonging to the first subblock 

 11  by 1 . As the next step we built design  1,0,16,510 Φ  in the form (2.1) 

for 1t  



































1101011100

1011100110

1110010011
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0100101111
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2
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 g
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