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Summary 

This work was intended as an attempt at motivating to increase the list of possible classes in 
that we are able to construct optimal plans of experiments. Here, we consider the criterion of D-
optimality. We introduce the relations between ternary balanced block designs and chemical 
balance weighing designs. Based on these relations we propose to construct the design matrix of 
the regular D-optimal chemical balance weighing design on the base of the set of the incidence 
matrices of the ternary balanced block designs. We consider these designs under basic assumption 
that the errors are equally correlated and they have the same variances. 
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1. Introduction

The chemical balance weighing design is described by the model 
eXwy += , where y  is an 1×n  random vector of the observations, 
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( )′= pwww ,...,, 21w  is a vector representing unknown measurements of p  

objects, { }1,0,1, −∈ × mpnΦX , where { }1,0,1, −× mpnΦ  denotes the class of 

pn×  matrices having entries 1,1−=ijx  or 0, m ( )n≤  is the maximal number 
of elements equal to 1 and –1 in each column of the matrix X . It is worth 
emphasising, that the class { }1,0,1, −× mpnΦ  is explicitly defined throughout the 
parameters n  and p . The parameter m is subsidiary and in extreme cases, 

nm = . We shall make two standing assumptions on the maps under 
considerations. The errors of measurements are equally correlated and they have 
the same variances. These two assumptions we can describe in the form: for 

1×n  random vector of errors e , ( ) n0e =E , ( ) Ge 2Var σ= , where 

 ( )( ) 10,0,1 ' <ρ≤>ρ+ρ−= gg nnn 11IG .  (1.1) 

Note, for 10 <ρ≤  and 0>g  the matrix G  is positive definite. We can 
assume that the matrix X  is of full column rank. In this situation all jw , 

pj ,...,2,1= , are estimable and the variance matrix of the best linear unbiased 
estimator yGXMw 1'1ˆ −−=  is equal ( ) 12ˆVar −σ= Mw , where XGXM 1−′=  
is called the information matrix for the design X .  

In the theory of weighing designs, there appear manifold problems. In 
Jacroux and Notz (1983), Jacroux et al. (1983), Neubauer and Pace (2010), 
Graczyk (2012) and Ceranka and Graczyk (2014a), the issues concerned on the 
setting down the conditions determining optimal design for different optimality 
criteria are presented. The questions considered in Sathe and Shenoy (1990), 
Ceranka and Graczyk (2002) and Li and Yang (2005) lead our attention to the 
construction methods optimal designs. The matter of application of weighing 
designs is dealt in Koukouvinos and Seberry (1997), Banerjee and Mukerjee 
(2007) and Graczyk (2014).  

The aim of present research is to plan the experiment in order to attain the 
best estimators of unknown measurements of objects. For that reason, the 
optimal designs are determined. They permit to estimate unknown parameters 
with minimal variance. Thus, different optimality criteria minimize some 
functions of the matrix M . Here, we develop the theory of D-optimal designs. 
The D-optimality criterion is also known as determinant criterion and results in 
minimizing the generalized variance of the parameter estimates, see Raghavarao 
(1971), Shah and Sinha (1989), Masaro and Wong (2008A), Katulska and 
Smaga (2013) and Smaga (2014). Let note, if the observation vector follows a 
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multivariate normal distribution, then D-optimality criterion chooses that design 
as the “best” for which the volume (expected volume) of the joint confidence 
ellipsoid is least.  

In the class { }1,0,1, −× mpnΦ , the design DX  is D-optimal if 

( ) ( ) { }( )1,0,1:detmindet ,
11' −∈= ×
−−

mpnDD ΦXMXGX . If ( )DD XGX 1'det −  
attains the lowest bound then the design is called regular D-optimal. In other 
cases it is called D-optimal. It is worth noting, regular D-optimal design is also 
D-optimal, but the converse isn’t necessarily true.  

Under assumption that the matrix G  in G2σ  is of the form (1.1), in 
Ceranka and Graczyk (2014a), the conditions determining regular D-optimal 
chemical balance weighing design and the construction methods based on the 
incidence matrices of the balanced incomplete block designs are collected. 
Consequently, we mention the definition and the theorem concerned the D-
optimal design given in above paper for this particular case. 

Definition 1.1. Any chemical balance weighing design { }1,0,1, −∈ × mpnΦX  

with the covariance matrix of errors G2σ , where G  is of (1.1), is regular D-

optimal if ( ) ( ) p

m
g







 ρ−

=− 1det 1M . 

Theorem 1.1. Any chemical balance weighing design { }1,0,1, −∈ × mpnΦX  

with the covariance matrix of errors G2σ , where G  is of (1.1), is regular D-
optimal if and only if 

(i) pmIXX ='  if 0=ρ , 

(ii) pmIXX ='  and pn 01X ='  if 10 <ρ< . 

The conditions in (ii) mean that m  has to be even and in each column of 
X  the numbers of elements –1 should be the same as +1.  

In present considerations, we investigate the methods of determining the 
classes { }1,0,1, −× mpnΦ  in those the regular D-optimal design exists. 
Subsequently, we look more closely at the problems concerned on the 
construction methods of D-optimal designs. We are focus on indicating some 
known designs based on their incidence matrices we are able to construct the 
design matrix of regular D-optimal design.   
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2.  The construction 

Masaro and Wong (2008A) and Katulska and Smaga (2013) derived the 
results of construction of regular D-optimal weighing designs in the class 

{ }1,1−×pnΠ , where { }1,1−×pnΠ  denotes the class of pn×  matrices having 

entries 1−=ijx  or 1. Ceranka and Graczyk (2014b) extend these results to the 

class { }1,0,1, −× mpnΦ . They give the construction method of regular D-optimal 
weighing design based on the incidence matrices of the balanced bipartite 
weighing designs. Unfortunately, it is not possible to construct the design matrix 
of regular D-optimal weighing design in any class { }1,0,1, −× mpnΦ . In some 

classes { }1,0,1, −× mpnΦ , we cannot determine optimal design based on the 
methods given in Ceranka and Graczyk (2014b). For that reason, in this section 
we give new construction based on the set of the incidence matrices of ternary 
balanced block designs (see Billington, 1984). The advantage of using ternary 
balanced block designs lies in the fact that based on their incidence matrices we 
are able to construct the matrix { }1,0,1, −∈ × mpnΦX  satisfying optimality 
criterion. Now, we recall the basic facts pertain to these designs. 

Any ternary balanced block design there is an arrangement of v  treatments 
in b  blocks, each of size k  in such a way that each treatment appears 0, 1 or 2 
times in r blocks. Each of the distinct pairs of treatments appears λ  times. Any 
ternary balanced block design is regular, that is, each treatment occurs alone in 

1ρ  blocks and is repeated two times in 2ρ  blocks, where 1ρ  and 2ρ  are 
constant for the design. It is straightforward to verify that 

( ) ( ) ( )2211,2, 2121 −ρ+−ρ=−λρ+ρ== kkvrbkvr . The incidence matrix 
N  of such a design has elements equal to 0, 1 or 2 and moreover, 

( ) '
21

' 4 vvv 11INN λ+λ−ρ+ρ= .  

Now, in order to determine regular D-optimal weighing design in new 
classes { }1,0,1, −× mpnΦ , let us construct the design matrix X  of the chemical 
balance weighing design from the set of t  incidence matrices of the ternary 
balanced block designs with parameters v , hb , hr , hk , hλ , h1ρ , h2ρ , 

th ,...,2,1= . So, we obtain 
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In this matrix, each column contains ∑
=

ρ
t

h
h

1
2  elements equal to 1, 

( )∑
=

ρ−ρ−
t

h
hhhb

1
21  elements equal to –1 and ∑

=

ρ
t

h
h

1
1  elements equal to 0. 

Clearly, such form of the design implies that each object is weighted 

( )∑
=

ρ−=
t

h
hhbm

1
1  times in the ∑=

=

t

h
hbn

1
 weighing operations. Hence, from 

practical point of view, the number t  should not be extremely large. 

Lemma 2.1. Any chemical balance weighing design with the design matrix 
{ }1,0,1, −∈ × mpnΦX  given by (2.1) is nonsingular if and only if hkv ≠  for at 

least one th ,...,2,1= . 

Proof. Any chemical balance weighing design is called nonsingular if its design 
matrix is of full column rank. In this situation, all unknown measurements of 
objects are estimable. If the matrix G  is positive definite, then the matrix M  is 
nonsingular if and only if XX '  is nonsingular. For G  of the form (1.1) and 

{ }1,0,1, −∈ × mpnΦX  given in (2.1), we have  

 ( ) ( ) '

11
2

' 22 vv

t

h
hhhv

t

h
hhh rbr 11IXX 








−λ++








ρ+λ−= ∑∑

==

.  (2.2) 

Moreover, we obtain  

 ( ) ( ) ( ) 
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Because ( ) 02
1

2 >ρ+λ−∑
=

t

h
hhhr , then the determinant (2.3) equals 0 if and 

only if hkv =  for each th ,...,2,1= . Thus the lemma is proved.                ■ 

Theorem 2.1. Let 0=ρ . Any nonsingular chemical balance weighing design 
{ }1,0,1, −∈ × mpnΦX  given by (2.1) with the covariance matrix of errors 

ngI2σ , is regular D-optimal if and only if 

 ( ) 02
1

2 =ρ−λ+∑
=

t

h
hhhb .  (2.4) 

Proof. We have been working under assumption { }1,0,1, −∈ × mpnΦX  is given 

by (2.1) and nIG = . Thus we obtain that the product XX '  is of the form (2.2). 
On the base of Theorem 1.1(i), X  is the design matrix of the regular D-optimal 
chemical balance weighing design if and only if pmIXX =' . From the above it 

follows that ( ) 02
1

2 =ρ−λ+∑
=

t

h
hhhb  which is the desired conclusion.        ■ 

Now, we can assume that hhh rb λ−= 2  for each th ,...,2,1= . Therefore, 
we obtain the following corollary. 

Corollary 2.1. Any nonsingular chemical balance weighing design 
{ }1,0,1, −∈ × mpnΦX  given by (2.1) with the covariance matrix of errors 

ngI2σ  is regular D-optimal if and only if hhh rb λ−= 2  for each th ,...,2,1= . 

We place emphasis on construction the design matrix 
{ }1,0,1, −∈ × mpnΦX  of the regular D-optimal chemical balance weighing 

design. There is a big number of receivable combinations between the 
parameters of the ternary balanced block designs for that the condition 

hhh rb λ−= 2  holds. For 1=t , some method of construction 
{ }1,0,1, −∈ × mpnΦX  given by (2.1) for which the condition λ−= rb 2  

holds, was given by Ceranka et al. (1998). Now, we generalize this result.  
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Theorem 2.2. Let 0=ρ . If the ternary balanced block design with the 
parameters  

(i) sv = , usb = , ( )2−= sur , 2−= sk , ( )4−=λ su , ( )41 −=ρ su , 
u=ρ2 , ,...6,5=s , ,...2,1=u , except the case 1=u  and 5=s , 

(ii) sv = , usb = , ( )3−= sur , 3−= sk , ( )6−=λ su , ( )91 −=ρ su , 
u32 =ρ , ,...11,10=s , ,...2,1=u ,  

(iii) sv = , usb = , ( )4−= sur , 4−= sk , ( )8−=λ su , ( )161 −=ρ su , 
u62 =ρ , ,...18,17=s , ,...2,1=u ,  

(iv) sv 12= , usb 4= , ( )14 −= sur , ( )143 −= sk , ( )122 −= suλ , 
( )341 −=ρ su , u=ρ2 , ,...2,1=s , ,...5,4=u , 

exists, then { }1,0,1, −∈ × mpnΦX  given by (2.1) is the regular D-optimal 

chemical balance weighing design with the covariance matrix of errors ngI2σ .  

Proof. It is easy to verify that the parameters of ternary balanced block designs 
given in (i)-(iv) satisfy the condition λ−= rb 2 .                                          ■ 

Next, we consider the case 2=t . Here, optimality condition given in 
Theorem 2.1 has the form  

 212121 22 λ−λ−+=+ rrbb .  (2.5) 

We formulate theorem presenting series of the parameters of two ternary 
balanced block designs that satisfy the condition (2.5). Based on these 
parameters we form the incidence matrices hN , 2,1=h , of the ternary balanced 
block designs and afterwards the matrix { }1,0,1, −∈ × mpnΦX  of the regular D-
optimal chemical balance weighing design with the covariance matrix of errors 

ngI2σ . 

Theorem 2.3. Let 0=ρ . If the ternary balanced block designs with the 
parameters  

(i) 5=v , 411 +== urb , 51 =k , 31 +=λ u , u=ρ11 , 221 =ρ  and 
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5=v , ( )252 += sb , ( )232 += sr , 32 =k , 32 +=λ s , 612 +=ρ s , 
s=ρ22 , ,...2,1, =us , 

(ii) 5=v , 911 +== urb , 51 =k , 71 +=λ u , 111 +=ρ u , 421 =ρ  and 
5=v , ( )452 += sb , ( )432 += sr , 32 =k , 62 +=λ s , 

1212 +=ρ s , s=ρ22 , ,...2,1, =us ,  

(iii) 5=v , ( )151 += sb , ( )141 += sr , 41 =k , 231 +=λ s , s411 =ρ , 
221 =ρ  and 5=v , ( )252 += ub , ( )232 += ur , 32 =k , 

32 +=λ u , 612 +=ρ u , u=ρ22 , ,...2,1, =us ,  

(iv) 6=v , 1011 +== urb , 61 =k , 81 +=λ u , u=ρ11 , 521 =ρ  and 
6=v , ( )522 += sb , 52 += sr , 32 =k , 22 =λ , s−=ρ 512 , 

s=ρ22 , 4,3,2,1=s , ,...2,1=u , 

(v) 7=v , 1311 +== urb , 71 =k , 111 +=λ u , 111 +=ρ u , 621 =ρ  
and 7=v , 212 =b , 122 =r , 42 =k , 52 =λ , 612 =ρ , 322 =ρ , 

,...2,1=u , 

(vi) 9=v , 811 +== urb , 91 =k , 71 +=λ u , u=ρ11 , 421 =ρ  and 
9=v , ( )432 += sb ,  ( )422 += sr , 62 =k , 52 +=λ s , 812 =ρ , 

s=ρ22 , ,...2,1, =us , 

(vii) =v 111 =k , 1011 +== urb , 91 +=λ u , u=ρ11 , 521 =ρ  and 
=v 112 =b , =2r 72 =k , 42 =λ , 512 =ρ , 122 =ρ , ,...2,1=u , 

(viii) 12=v , 181 =b , 151 =r , 101 =k , 111 =λ , 111 =ρ , 721 =ρ  and 
12=v ,  ( )5232 += sb , ( )5222 += sr , 82 =k , ( )322 +=λ s , 

s2612 −=ρ , 2322 +=ρ s ,        2,1,0=s , 

(ix) =v 151 =k , 1411 +== urb , 131 +=λ u , u=ρ11 , 721 =ρ  and 
15=v , ( )432 += sb , ( )422 += sr , 102 =k , 52 +=λ s , 

s2612 −=ρ , 1222 +=ρ s , 2,1=s , ,...2,1=u , 
exist, then { }1,0,1, −∈ × mpnΦX  given by (2.1) is the regular D-optimal 

chemical balance weighing design with the covariance matrix of errors ngI2σ .  
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Proof. The parameters of the ternary balanced block designs (i)-(ix) satisfy the 
condition (2.5).                                                                                          ■ 

In particular case, when 1N  is the incidence matrix of the ternary balanced 
block design with the parameters v , 1b , 1r , 1k , 1λ , 11ρ , 21ρ  and 2N  is the 
incidence matrix of its complementary design, i.e. 1

'
2 1

2 N11N −= bv  with the 

parameters v , 12 bb = , 112 2 rbr −= , 12 2 kvk −= , 1112 44 rb −+λ=λ , 

1112 ρ=ρ , 2111122 ρ−ρ−=ρ b , then the condition (2.5) reduces to 

111 2 λ−= rb  and we have corollary. 

Corollary 2.2. Let 0=ρ . If the ternary balanced block design with the 
parameters given in Theorem 2.2 exists, then { }1,0,1, −∈ × mpnΦX  of the form 

 












−
−

= '
1

'

''
1

1

1

N11
11N

X
vb

vb   (2.6) 

is the regular D-optimal chemical balance weighing design with the covariance 
matrix of errors ngI2σ .  

Now, we consider the case 10 <ρ< . The conditions given in Theorem 
1.1(ii) imply the following corollary. 

Corollary 2.3. Any nonsingular chemical balance weighing design 
{ }1,0,1, −∈ × mpnΦX  given by (2.1) with the covariance matrix of errors G2σ  

for 10 <ρ< , is regular D-optimal chemical balance weighing design if and 
only if { }1,0,1, −∈ × mpnΦX  given by (2.1) with the covariance matrix of 

errors ngI2σ  is regular D-optimal chemical balance weighing design under 

condition pn 01X =' . 



32 BRONISŁAW CERANKA, MAŁGORZATA GRACZYK 

From the construction of the design matrix { }1,0,1, −∈ × mpnΦX  it 

follows that each column contains ∑
=

ρ
t

h
h

1
2  elements equal to 1 and 

( )∑
=

ρ−ρ−
t

h
hhhb

1
21  elements equal to –1. Thus we have the following theorem. 

Theorem 2.4. Let 10 <ρ< . Any nonsingular chemical balance weighing 
design { }1,0,1, −∈ × mpnΦX  given by (2.1) with the covariance matrix of 

errors G2σ  is regular D-optimal chemical balance weighing design if and only 
if the condition (2.4) is fulfilled and 

 ∑∑
==

=
t

h
h

t

h
h rb

11

.  (2.7) 

Proof. Assume the design matrix { }1,0,1, −∈ × mpnΦX  is of the form (2.1) and 

( )1,0∈ρ . We conclude from Theorem 1.1(ii) that pmIXX ='  and 

pn 01X =' . According to Theorem 2.1 the condition pmIXX ='  is fulfilled if 

and only if (2.4) holds. Since 10 <ρ< , the condition pn 01X ='  is true if and 
only in each column of X , the number of elements equal to 1 is the same as the 
number of elements equal –1. In this way, we obtain (2.7). So, the Theorem is 
proved.                                                                                                          ■ 

Corollary 2.4. Let 10 <ρ< . If the ternary balanced block designs with the 
parameters given in Theorem 2.2 exist, then { }1,0,1, −∈ × mpnΦX  of the form 

(2.6) with the covariance matrix of errors G2σ  for 10 << ρ , is regular D-
optimal chemical balance weighing design. 

3.  Discussion 

One of the basic problems in determining regular D-optimal chemical 
balance weighing designs in the given class { }1,0,1, −× mpnΦ , is 
recommendation the construction method of such designs. The indicating new 
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construction method of the matrix of optimal design is equivalent to the 
determining optimal plan of the experiment. In the literature, some incidence 
matrices of know block designs are used for constructions. For example, in 
Jacroux et al. (1983), the construction of { }1,0,1, −∈ × mpnΦX  of the chemical 
balance weighing designs based on the incidence matrices of the balanced 
incomplete block designs, is presented. Under assumption that the errors are 
uncorrelated, i.e. 0=ρ , Ceranka and Graczyk (2014b) considered the 
construction of the design matrix X  of the regular D-optimal chemical balance 
weighing design based on incidence matrices of balanced bipartite weighing 
designs. Based on this method, we are able to construct regular D-optimal 
chemical balance weighing design in the class { }1,0,116,936 −×Φ , i.e for 9=p  
objects and 36=n  measurements (at least), see Theorem 2.3 in Ceranka and 
Graczyk (2014b) for 3,9 == uv  and 2=s . Based on the method given in 
present paper, it is possible to determine unknown measurements of 9=p  
objects in the regular D-optimal chemical balance weighing design for smaller 
number of measurements 9=n , i.e. in { }1,0,14,99 −×Φ , see Theorem 2.2(ii) 
for 9=s  and 1=u . Similarly, if 10 <ρ<  and 11=p , in Ceranka and 
Graczyk (2014b) the regular D-optimal chemical balance weighing design exists 
in the class { }1,0,140,11110 −×Φ , see Theorem 2.8 for 3,11 == ut  and 2=s . 
Taking into consideration the results given above, we indicate regular D-optimal 
design in the class { }1,0,118,1122 −×Φ , see Corollary 2.4 and Theorem 2.2(ii) 
for 11=s  and 1=u . Therefore, it seems to be advantageous, to indicate new 
classes in which the construction of optimal design is possible. We can strongly 
reduce the number of measurements and in consequence lessen experimental 
costs.  

In the light of Corollary 2.4, if the ternary balanced block design with the 
parameters given in Theorem 2.2 exists, then the design { }1,0,1, −∈ × mpnΦX  

of the form (2.6) with the covariance matrix of errors G2σ  is optimal for any 
10 <ρ< . Thus, the design of such form is called robust, see Masaro and Wong 

(2008b). It means we can determine unknown measurements of objects 
according to the same D-optimal design { }1,0,1, −∈ × mpnΦX  for any 

10 <ρ< , i.e. for different correlation, it implies in various conditions. 
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