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Summary 

We present general and particular analyses under a mixed linear model resulting from the 
construction of a non-orthogonal split-split-plot (SSP) design and proper randomization performed 
(see, Ambroży and Mejza, 2013). The design was generated by some group divisible block 
designs. Attention is paid to optimal statistical properties with respect to the efficiency of 
estimation of some groups of basic and any contrasts in both the generating and final designs. The 
considerations are illustrated with simulated data from an experiment with grain yields of winter 
wheat. 

Key words and phrases: any treatment contrast, basic treatment contrast, general balance, partial 
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1. Introduction

The aim of this paper is to present general and particular analyses under a 
mixed linear model resulting from a construction of non-orthogonal split-split-
plot (SSP) design and proper randomization performed as it is given by 
Ambroży and Mejza (2013). This work is a continuation of the mentioned above 
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paper. Given there method of the construction is based on Kronecker’s product 
of three matrices, AN , BN  and CN . Two first of them are incidence matrices of 
generating designs for factors A and B  while the third one is an incidence matrix 
of a randomized complete block (RBD) design (for factor C). To reduce a 
number of blocks in the final design it can be assumed that CN  is reduced to one 
block only ( 1N =C ).  

To illustrate statistical analyses proposed in the present paper some 
simulated data from an original experiment will be used. It means that 
conclusions reached here should be treated as a category of a methodology for 
planning and analysis such experiments. In these analyses, both basic (Pearce et 
al., 1974) and any treatment contrasts (e.g. Ceranka and Mejza, 1979) will play 
an essential role. R and STATISTICA packages were used for all calculations. 

2. Stratum analyses 

2.1. Multistratum model 

In the multistratum SSP type experiment the stratum analyses are based on 
submodels yPy ff = , f = 0, 1, 2, 3, 4, where y is an n × 1 vector of the 

lexicographically ordered observations with fP  being orthogonal projection on 
the f-th stratum and f denotes the number of the stratum i.e. the total-area stratum 
(“zero” stratum), the inter-block stratum (1), the inter-whole plot stratum (2), the 
inter-subplot stratum (3) and the inter-sub-subplot stratum (4). One can find 
forms of the matrices fP , f = 0, 1, 2, 3, 4, in Mejza (1997). 

The assumed orthogonal block structure of the considered SSP design 
allows one to apply Nelder's (1965a, 1965b) approach to the analysis of 
variance, where stratum information matrices for the treatment combinations, 

ΔΔ ′= ff PA  play important role wherein Δ′  is an n × v design matrix for v 

treatment combinations. One can find the forms of the fA , f = 0, 1, 2, 3, 4, in 
Ambroży and Mejza (2013).  

The matrix 0A  in “zero” stratum is suitable mainly for the estimating the 
general mean of the experiment. The algebraic properties of the other fA , f = 1, 
2, 3, 4, are strictly connected with statistical properties of the SSP design, in 
particular with estimability of linear functions of treatment parameters. From the 
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fact (cf. Ambrozy and Mejza, 2013) that 01A =f ,  f = 1, 2, 3, 4, it follows that 
if a linear function c’τ is estimable in the f-th stratum then it must be a contrast, 
i.e. c’1 = 0, wherein τ  (v × 1) is the vector of fixed treatment combination 
effects.  

Describing statistical properties of the SSP design and performing the 
stratum analyses will be highly simplified if we will use basic treatment 
combination contrasts under assumption that the design is generally balanced. 

2.2. Basic contrasts with reference to property of general balance 

Let fhε  )10( ≤ε≤ fh  be an eigenvalue of the matrix fA  with respect to 

)(diag 21
δ

vr...,,r,r=r  and hp  be the corresponding eigenvector, where f = 0, 1, 
2, 3, 4, hr  is a replicate of the h-th treatment combination with h = 1, 2,..., v  The 

eigenvectors can be chosen to be mutually δr -orthonormal, i.e. 1=′ δ
hh prp  and 

0=′ ′
δ

hh prp , for h ≠ h', where h, h' = 1, 2,.., v. Since 01A =vf , f > 0, the last 

eigenvector vp  may be chosen as vn 12/1− . 

Let us note that hh prc δ=  define (basic) treatment combination contrasts of 
the form τ′hc , h = 1, 2,..., v-1 (cf. Pearce et al., 1974). The contrast τ′hc  is 
estimable in the f-th stratum,  f = 0, 1, 2, 3, 4, when the following relation holds 

 fhfhfhf prpA δε= , (2.1) 

fhε  ≠ 0,   f = 0, 1, 2, 3, 4;   h = 1, 2,..., v-1. 

Then the eigenvalue fhε  can be identified as a stratum efficiency factor of 

the SSP design with respect to the estimation of the basic contrast τ′hc  in the f-th 
stratum.  All considerations are simplified if the information matrices fA  have 

a common set of eigenvectors with respect to δr , i.e. the matrices fA  mutually 

commute with respect to δ−r :  ,ffff ArAArA δ−
′′

δ− =  for  f,  f' = 0, 1, 2, 3, 4;  

f≠ f ' and  )/1,,/1,/1(diag 21 vrrr =δ−r . 

When those conditions hold, the SSP design considered is generally 
balanced designs (Mejza, 1992) and then, the eigenvalues fhε  satisfy relation 
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14321 =ε+ε+ε+ε hhhh , for h < v. The common eigenvectors of fA  (f = 0, 1, 

2, 3, 4), with respect to δr  can be generated by different ways. One of the 
methods will be illustrated in the Section 3 (Results). The stratum BLUE of τ′hc  
can be obtained as 

=′
∧

fh )( τc  fhfh Qp′ε−1 ,     where yPQ ff ∆=  

with 

Var{ fh

∧
′ )( τc }= ffhγε−1 ,   f = 0, 1, 2, 3, 4;  h = 1, 2,..., v-1, 

where 0≥γ f  are stratum variances. 

2.3.  Any treatment combination contrasts 

In the experiments we are often interested in an estimation and testing 
hypothesis concerning any treatment contrasts different than basic contrasts. Let 
τs′  be a contrast. It is easily seen that τs′  is estimable in the f-th stratum iff it 

can be written as  

hfhff cccs λ++λ+λ= ...2211 , 

where fjλ , f = 1, 2, 3, 4; j = 1, 2,..., h, are scalars such that 

0... 22
2

2
1 >λ++λ+λ fhff  and h denotes the number of the basic contrasts 

estimable in the f-th stratum. Since vectors c j,  j = 1, 2,..., h,  are mutually δ−r - 
orthonormal, then (cf. Ceranka and Mejza, 1979) 

spsrc jjfj ′=′=λ δ− ,         f = 1, 2, 3, 4;  j = 1, 2,..., h. 

Hence a stratum estimator of the contrast τs′  has the form 

∑
=

∧∧
′λ=′

h

j
fjfjf

1
)()( ττ cs  

and its variance is the following: 
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∑
=

∧

ε
λ

γ=′
h

j fj

fj
ff

1

2

])(Var[ τs . 

The efficiency factor of the design for any treatment contrast estimable in 
the f-th stratum is given by 

)(E
∧
′τsf  = )/(/)(

1

2

1

2
fj

h

j
fj

h

j
fj ελλ ∑∑

==

. 

2.4.  Testing hypotheses 

If normality of random variables of the model is assumed, it is easy to 
construct an exact test of the hypothesis 0:H0 =′ ττ ff A , f = 1, 2, 3, 4, relating 
to all the treatment (combination) contrasts estimable in the f-th stratum 
(ANOVA). In particular we are interested in testing hypothesis for any treatment 
contrasts, 0:H0 =′∗ τsf , estimable in the  f-th stratum. It is easy to express (cf. 

Graybill, 1961) also general hypothesis, 0W =′τ:H0  for all basic contrasts 
estimable in the f-th stratum connected with the main or interaction effects of the 
factors. The number of these treatment combination contrasts (called shortly 
“Treatments”) is equal to rank of the matrix W, i.e. r(W). The necessary sum of 
squares for „Treatments” in ANOVA can be obtained by the formula 

SST f  = ∑ε
h

fh [ fh

∧
′ )( τc ]2,           f = 1, 2, 3, 4, 

while the sum of squares for errors are as follows 

SSE f  = SSY f  − SST f , where  SSY f = y’Pf y. 

These sums are sufficient to build the appropriate F-tests. 
Table 1. ANOVA in the f-th stratum, f = 1, 2, 3, 4. 

Source of variation DF SS E(MS) 
„Treatments” (f) )r( fTf A=ν  SSTf 

fγ + ( Tfν )-1 ττ′ fA  
Error (f) 

TffEf ν−ν=ν  SSEf 
fγ  

Total (f) )r( ff P=ν  SSYf 
fγ + ( fν )-1 ττ′ fA  
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3. Results 

Let us consider an s × t × w experiment designed to investigate a response 
of yield in s = 7 varieties (genotypes) of winter wheat for t =5 different doses of 
nitrogen fertilization and a chemical preparation – growth regulator (w = 2). The 
experiment was carried out in a split-split-plot (SSP) design incomplete with 
respect to whole plot treatments (the varieties) and also subplot treatments 
(nitrogen fertilizations) while complete with respect to sub-subplot treatments 
(the growth regulator). The method of construction of the SSP design was 
presented by Ambroży and Mejza (2013).   

As was mentioned in that paper the genotypes comprised six new varieties 
( 61 =s ; 61 ...,, AA ) called the test whole plot (A)  treatments and one standard 
variety ( 7A ) called the standard whole plot (A) treatment. The test subplot (B) 
treatments were defined by increasing fertilization doses: 4321 ,,, BBBB  
( 41 =t ), and 5B  (no fertilization) signified the standard (control) subplot 
treatment. The sub-subplot treatments corresponded to the application (or no 
application) of  the chemical preparation: 21, CC  ( 2=w ). 

Because of the fact that an experimental material connected with new 
varieties was limited, this experiment was conducted in an incomplete SSP 
design with an incidence matrix wBA 1NNN ⊗⊗=1 , where AN  and BN  are 
as follows: 










′
=

3

~

1
NN A

A ,        








′
=

4

~

1
NN B

B  

wherein AN~  and BN~  are incidence matrices of group divisible block designs of 
types S1 and SR1, respectively (Clatworthy, 1973). According to this fact let us 
assume the test A treatments  and the test  B treatments can be grouped with 
regard to the following S1 and SR1 associate schemes, respectively: 

 
                                                                                                                                                          

 

 

 

Groups G21 G22  Groups G21 G22 

G11 A1 A4  G11 B1 B3 

G12 A2 A5  G12 B2 B4 

G13 A3 A6     
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The corresponding incidence matrices AN~  and BN~  are given by Ambroży 
and Mejza (2013). The generated SSP design with the incidence matrix 1N  has 
the following parameters: 

70=v ,   12=b ,    30=k ,    2]4,2,2,2,2[]3,2,2,2,2,2,2[ 1r ⊗′⊗′= , 

where v, b, k are the number of treatment combinations, the number of blocks, 
the number of units within the blocks, respectively and r denotes the vector of 
replicates of the treatment combinations. 

Statistical analysis started with the appointment of the information matrices 
fA , f = 1, 2, 3, 4, according to the formula given in Section 2.2. Then we 

investigated algebraic properties of them. It should be noted that we can obtain 
eigenvalues fhε  of fA  (stratum efficiency factors) using the eigenvalues of the 
generating matrices (Ambroży and Mejza, 2013: Table 1) or by an appropriate 
computer program (here R package). In both cases we need a set of eigenvectors 
(mutually commuted with respect to δ−r ) which generate the basic contrasts 

(see, Section 2.2), where δ−r = 







3/1

)2/1( 6

0
0I

 ⊗ 







4/1

)2/1( 4

0
0I

 ⊗ 2I . 

The computer programs create always a set of eigenvectors, which usually 
does not have interpretations according to the aim of the experiment. 

In the paper we propose a procedure of creating the set of basic contrasts 
using information relating to the generating S1 and SR1 designs. In this kind of 
the experiment, we are mainly interested in comparisons among the test A 
treatment effects and among the test B treatment effects. We suppose that the 
experimenter is also interested in the comparisons between a set of the test A (or 
B) treatment effects and the control A (or B) treatment effect, respectively. 
Taking into account the associate schemes S1 and SR1 provided above, let   

[ ]′−= 0111Ag  or [ ]′−= 2111Ag  (among rows)  

and [ ]′−= 112 Ag  (between columns); [ ]′−= 111Bg  (between rows)  

and [ ]′−= 112Bg  (between columns).  (3.1) 

The vectors (3.1) create comparisons among test A (B) treatment effects 
inside groups and among interaction treatment effects from different groups. 
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They also relate to comparisons connected with test A (B) treatment effects 
between groups only. They all are used to build the orthonormal eigenvectors of 
the information matrices AC~  (Table 2) and BC~  (Table 3). Their corresponding 
eigenvalues were presented also by Ambroży and Mejza (2013). In turn Tables 4 
and 5 present sets of orthonormal eigenvectors of the information matrices CA 

and CB, respectively. Assuming also that [ ]′−= 11
2

1
1Cp , [ ]′= 11

2
1

2Cp  

we can construct the common set of δ−r - orthonormal eigenvectors for the SSP 
design as CkBjAih pppp ⊗⊗= ,  

where i = 1, 2.…. 7; j = 1, 2..... 5; k = 1, 2; kjwitwh +−+−= )1()1( . We can 
note (see, Section 2.2) that hh prc δ=  defines a (basic) contrast τch′ , h = 1, 2,..., 
69. The last vector p70 does not define the contrast. In any case, we should check 
using formula (2.1) from Section 2.2. in which stratum the contrast τch′  is 
estimable. 

Table 2. Eigenvalues and eigenvectors for the generating subdesign Ad~  for the test A 
treatments 

Eigenvalues of 

matrix AC~  
Common eigenvectors 

75.0~
2 =ε A  

[ ]′−−=⊗= 011011
2
1~

123 AA g1p  

[ ]′−−=⊗= 211211
12
1~

124 AA g1p  

1~
1 =ε A  

[ ]′−−−=⊗= 111111
6

1~
321 1gp AA  

[ ]′−−−=⊗= 211211
12
1~

122 AAA ggp  

[ ]′−−=⊗= 011011
2
1~

125 AAA ggp  

0 66 6
1~ 1p =A  
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Table 3. Eigenvalues and eigenvectors for the generating subdesign Bd~  for the test B 
treatments 

Eigenvalues of matrix BC~  Common eigenvectors 

5.0~
2 =ε B  

[ ]′−−=⊗= 1111
2
1~

211 1gp BB  

[ ]′−−=⊗= 1111
2
1~

213 BBB ggp  

1~
1 =ε B  [ ]′−−=⊗= 1111

2
1~

222 BB g1p  

0 44 2
1~ 1p =B  

Table 4. Eigenvalues and common eigenvectors for the generating subdesign Ad  for the 
factor A 

Eigenvalues of matrix CA Common eigenvectors 

8.02 =εA  

[ ]′= 0~
2

1
33 AA pp  

[ ]′= 0~
2

1
44 AA pp  

11 =εA  

[ ]′= 0~
2

1
11 AA pp  

[ ]′= 0~
2

1
22 AA pp  

[ ]′= 0~
2

1
55 AA pp  

10 =εA  [ ]′−= 4~
10
1

66 AA pp  

0 77 15
1 1p =A  

 

 

 



56 KATARZYNA AMBROŻY-DERĘGOWSKA, IWONA MEJZA, STANISŁAW MEJZA 

 

Table 5. Eigenvalues and common eigenvectors for the generating subdesign Bd  for the 
factor B 

Eigenvalues of matrix CB Common eigenvectors 

3/22 =εB  

[ ]′= 0~
2

1
11 BB pp  

[ ]′= 0~
2

1
33 BB pp  

11 =εB  [ ]′= 0~
2

1
22 BB pp  

10 =εB  [ ]′−= 2~
6

1
44 BB pp  

0 55 12
1 1p =B  

The proposed contrasts are strictly connected with the comparisons among 
the main effects of the considered factors and interaction effects between them. 
In the present paper, we consider the following types of the basic treatment 
contrasts (see, Table 6):  

• among main effects of the whole plot treatments including: test A 
treatments ( TA ) and between the group of test A treatments and the 
whole plot standard ( TA vs. SDA ); 

• among main effects of the subplot (B) treatments including: test B 
treatments ( TB ) and between the group of test B treatments and the 
subplot standard ( TB vs. SDB ); 

• between main effects of the sub-subplot (C) treatments; 

• other interaction contrasts. 

Stratum efficiency factors of the considered SSP design with respect to 
these contrasts (expressed by the eigenvalues fhε ) are given in parentheses in 
Table 6 (see also Ambroży and Mejza, 2013: Table 2). Moreover in this table we 
present estimates of the contrasts with information in which strata they are 
estimated (see, Section 2.2). 
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Table 6.   Stratum estimates of the basic contrasts (SSP design) 

Indexes 
Type of contrasts 

Strata 

h j k l (1) (2) (3) (4) 

1 1 1 1 CBA TT ⊗⊗     -1.7371 (1) 

2 1 1 2 TT BA ⊗   
-11.9122 

(1/3) 
-10.9823  

(2/3)  

3 1 2 1 CBA TT ⊗⊗     -1.1915 (1) 

4 1 2 2 TT BA ⊗    2.3419  (1)  

5 1 3 1 CBA TT ⊗⊗     -1.8786 (1) 

6 1 3 2 TT BA ⊗   
-1.9341  

(1/3) 
-3.2840   

(2/3)  

7 1 4 1 CBvsBA SDTT ⊗⊗ ).(
 

   0.5338  (1) 

8 1 4 2 ).( SDTT BvsBA ⊗    -0.4963  (1)  

9 1 5 1 CAT ⊗     3.0140  (1) 

10 1 5 2 TA   8.3774  (1)   

11 2 1 1 CBA TT ⊗⊗     0.6899  (1) 

12 2 1 2 TT BA ⊗   
12.1923  

 (1/3 
10.1195   

(2/3)  

13 2 1 1 CBA TT ⊗⊗     0.3562  (1) 

14 2 1 2 TT BA ⊗    6.0758  (1)  

15 2 3 1 CBA TT ⊗⊗     -1.9667 (1) 

16 2 3 2 TT BA ⊗   
-0.5195  

(1/3) 
-1.2697   

(2/3)  

17 2 4 1 CBvsBA SDTT ⊗⊗ ).(
 

   -1.4902 (1) 

18 2 4 2 ).( SDTT BvsBA ⊗    -6.1253  (1)  

19 2 5 1 CAT ⊗     -0.3262 (1) 

20 2 5 2 TA   -0.4988  (1)   

21 3 1 1 CBA TT ⊗⊗     5.3192  (1) 

22 3 1 2 TT BA ⊗  
9.0474  
(1/15) 

 

9.0165  
(4/15) 

5.9441   
(2/3)  

23 3 2 1 CBA TT ⊗⊗     -1.7183 (1) 
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Indexes 
Type of contrasts 

Strata 

h j k l (1) (2) (3) (4) 

24 3 2 2 TT BA ⊗    3.9492  (1)  

25 3 3 1 CBA TT ⊗⊗     -1.3046 (1) 
 

26 3 3 2 TT BA ⊗  
-4.0340  
(1/15) 

-2.8121  
(4/15) 

-6.3100   
(2/3)  

27 3 4 1 CBvsBA SDTT ⊗⊗ ).(
 

   -1.7820 (1) 
 

28 3 4 2 ).( SDTT BvsBA ⊗    -1.3901  (1)  

29 3 5 1 CAT ⊗     2.2105  (1) 

30 3 5 2 TA  -3.6142 
(2/10) 

6.7357  
(8/10)   

31 4 1 1 CBA TT ⊗⊗     0.0143  (1) 

32 4 1 2 TT BA ⊗  
4.9623  
(1/15) 

4.5540  
(4/15) 

4.3509  
 (2/3)  

33 4 2 1 CBA TT ⊗⊗     -0.0684 (1) 

34 4 2 2 TT BA ⊗    3.1057  (1)  

35 4 3 1 CBA TT ⊗⊗     2.5015  (1) 

36 4 3 2 TT BA ⊗  -6.4728  
(1/15) 

-1.5751  
(4/15) 

-2.3097   
(2/3)  

37 4 4 1 CBvsBA SDTT ⊗⊗ ).(
 

   -1.6210 (1) 

38 4 4 2 ).( SDTT BvsBA ⊗    -11.0350  (1)  

39 4 5 1 CAT ⊗     -0.8287 (1) 

40 4 5 2 TA  -5.6617  
(2/10) 

-9.2903  
(8/10)   

41 5 1 1 CBA TT ⊗⊗     1.0801  (1) 

42 5 1 2 TT BA ⊗   1.0536  (1/3) -1.3780  (2/3)  

43 5 2 1 CBA TT ⊗⊗     0.4596  (1) 

44 5 2 2 TT BA ⊗    6.3215  (1)  

45 5 3 1 CBA TT ⊗⊗     0.1697  (1) 

46 5 3 2 TT BA ⊗   
-5.8531  

(1/3) 
-6.7255   

(2/3)  

47 5 4 1 CBvsBA SDTT ⊗⊗ ).(
 

   1.7269  (1) 
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Indexes 
Type of contrasts 

Strata 

h j k l (1) (2) (3) (4) 

48 5 4 2 ).( SDTT BvsBA ⊗    6.3870  (1)  

49 5 5 1 CAT ⊗     2.0070  (1) 

50 5 5 2 TA   12.8280  (1)   

51 6 1 1 CBAvsA TSDT ⊗⊗).(
 

   -1.9039 (1) 

52 6 1 2 TSDT BAvsA ⊗).(   9.3694  (1/3) 6.2666  (2/3)  

53 6 2 1 CBAvsA TSDT ⊗⊗).(
 

   -0.0036 (1) 

54 6 2 2 TSDT BAvsA ⊗).(    7.9903  (1)  

55 6 3 1 CBAvsA TSDT ⊗⊗).(
 

   2.1098  (1) 

56 6 3 2 TSDT BAvsA ⊗).(   
-2.3251  

(1/3) 
-5.2255   

(2/3)  

57 6 4 1 
CBvsB

AvsA
SDT

SDT

⊗

⊗

).(

).(
    0.0606  (1) 

58 6 4 2 ).().( SDTSDT BvsBAvsA ⊗

 
  -10.2104  (1)  

59 6 5 1 CAvsA SDT ⊗).(     -2.7161 (1) 

60 6 5 2 SDT AvsA .   -21.1928  (1)   

61 7 1 1 CBT ⊗     -2.7653 (1) 

62 7 1 2 TB  -31.2485  
(1/3) 

 -27.6021   
(2/3)  

63 7 2 1 CBT ⊗     -2.7085  (1) 

64 7 2 2 TB    -14.5547  (1)  

65 7 3 1 CBT ⊗     0.3757  (1) 

66 7 3 2 TB  -2.0875 (1/3)  -4.1751  (2/3)  

67 7 4 1 CBvsB SDT ⊗).(     7.1964  (1) 

68 7 4 2 SDT BvsB .    38.3672  (1)  

69 7 5 1 C     45.098 (1) 

(1) - the inter-block stratum, (2) - the inter-whole plot stratum, (3) - the inter-subplot 
stratum, (4) - the inter-sub-subplot stratum. 
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From Table 6 it can be seen that only contrasts among main effects of the 
test A treatments ( TA ), the test B treatments ( TB ) and the contrasts of the 
interaction effects of type TA × TB , ( SDT AvsA . )× TB  are estimated with a 
different precision (two or three classes of efficiency). The contrasts with the 
first group of efficiency are estimated with full efficiency (= 1) in appropriate 
strata and the contrasts with the second group (not full efficiency) are estimated 
in two or three strata. The remaining contrasts are estimated as in a complete 
(orthogonal) SSP design with full efficiency in the sub-subplot stratum (c.f. 
Ambroży and Mejza, 2013). It means that their BLUEs under submodel in this 
stratum are BLUEs in the overall model of observations. In the statistical 
inference about those contrasts which are estimable in two or three strata we can 
use information about them separately from one stratum only. Advantage of 
used incomplete SSP design in the experiment is that more information about 
these contrasts is included in appropriate for them stratum. So we can choose 
this stratum to test the hypothesis connected with these contrasts. 

Table 7 presents the analysis of variance in the strata (see, Section 2.4). One 
may notice, for instance, that in the fourth stratum the hypothesis 

0:H 404 =′ ττ A  refers to all basic contrasts which are estimable in the sub-
subplot stratum (4). They are of types C, A × C, B × C and A × B × C and 
constitute so called “Treatments” in the stratum (4) as in Table 1.  

From Table 7 we can calculate Mean Square for “Treatments” 

===
35

3641.2199
ν

SST
MST

4
4

T

f 62.839. Then, knowing the estimate of the error 

variance in the fourth stratum 6716.0MSEˆ 44 ==γ  we obtain that hypothesis 

04H  is rejected at α = 0.01 because F value = 93.566 is significant with 
empirical value p = 0.0000. More interesting are general hypotheses connected 
with the factor C and all interactions connected with it in the stratum (4). For 
instance the general hypothesis for interaction A × C can be written as 

0W =′×
× τCA:H CA

0 , where ][ 59493929199 ccccccW =×CA , 6)(r =×CAW . This 
hypothesis is rejected at α = 0.01 because F value = 6,4942 is significant with 
empirical value p = 0.0000. We can say, that interaction between winter wheat 
genotype effects and the growth regulator effects is highly significant.  

Then the general hypothesis connected with the factor A ( 0W =′τA
A :H0 , 

6)(r =AW ) is rejected at the level 0.01 (p = 0.0000) in the inter-whole plot 
stratum. As the result, at least two true average yields of the genotypes of winter 
wheat are not the same.  
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The general hypothesis connected with the factor B ( 0W =′τB
B :H0 , 

4)(r =BW ) is rejected at the level α = 0.01 (p = 0.0000) in the inter-subplot 
stratum. As the result, at least two true average yields at the considered nitrogen 
fertilization are different.  

The general hypothesis connected with the main effects of the factor C is 
rejected at the level α = 0.01 (p = 0.0000) in the inter-sub-subplot stratum. As a 
result, the difference between true average yields of the chemical preparation – 
growth regulator are highly significant.  

Similarly, the general hypothesis connected with the interaction effects 
between the factors A and B  is rejected at the level α = 0.01 in the inter-subplots 
stratum. The remaining general hypotheses connected with interaction effects 
are testable in the fourth stratum only. 

The next step, for example in the inter-sub-subplot stratum analysis (4), is to 
investigate the basic contrasts estimable in this stratum more closely (Table 8). 

After the rejection of the general hypotheses in the strata, detailed study of 
estimable basic contrasts in these strata is recommended. We will illustrate this 
idea in the stratum (4) - between sub-subplots only. For instance all interaction 
contrasts of A × C type effects are estimable in this stratum. Five contrasts (with 
subscripts 9, 19, 29, 39, 49) relate to compare the interaction effects of the test 
genotypes and growth regulator combinations. While the interaction contrast 

τc59′  concerns the comparison of the effect of standard treatment of factor A 
(standard variety) and the average effect of other treatments of this factor (test A 
treatments) under the chemical preparation - the growth regulator.  

For example, it can be seen from Table 8, that through the hypothesis 
0=′ τ9

*
04 :H c  we can check if there is a significant difference between the true 

average yield of the test genotypes number 1, 2, 3, and the true average yield of 
other test varieties within growth regulator. We reject this hypothesis at the level 
α = 0.01. It means that the difference between above mentioned real averages of 
yield is significant.  

Furthermore, we fail to reject the hypothesis 0=′ τ19
*
04 :H c  declaring that 

there is no significant difference between the true average yield of the test 
varieties of the numbers 1, 2, 6 and the true average yield of other test varieties 
within growth regulator.  

In turn, we reject the hypothesis 0=′ τ59
*
04 :H c  at the significance level of 

0.01, which represents a significant difference between the true averages of yield 
for some combinations  A × C. Probably the particular hypotheses for the 
contrasts with the subscripts 9, 29, 49, 59 are responsible for the rejection of the 
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general hypothesis concerning the interaction effects of the type A × C in the (4) 
stratum.  

Table 7.  ANOVA for the incomplete SSP design considered 
Sources of variation DF SS MS F p 

Stratum (1) – inter-block analysis 

Faktor A  2 9.0234 4.5117 3.2945 0.175 

Faktor B  2 326.9426 163.4713 119.3705** 0.0014 

A × B 4 10.9767 2.7442 2.0039 0.2973 

Error (1) 3 4.1083 1.3694   

Total (1) - Bloks 11 351.0510    

Stratum (2) – inter-whole plot analysis 

Faktor A  6 789.4661 131.5777 134.0705** 0.0000 

A × B 12 171.0212 14.2518 14.5218** 0.0000 

Error (2) 30 29.4422 0.9814   

Total (2) – Whole plots 48 989.9295    

Stratum (3) – inter-subplot analysis 

Faktor B  4 2203.4188 550.8547 344.6495** 0.0000 

A × B 24 776.9855 32.3744 20.2555** 0.0000 

Error (3) 92 147.0440 1.5983   

Total (3) - Subplots 120 3127.4483    

Stratum (4) – inter-sub-subplot analysis 

Faktor C  1 2033.8563 2033.8563 3028.3130** 0.0000 

A × C 6 26.1696 4.3616 6.4942** 0.0000 

B × C 4 66.9124 16.7281 24.9073** 0.0000 

A × B × C 24 72.4258 3.0177 4.4933** 0.0000 

Error (4) 145 97.3840 0.6716   

Total (4) - Sub-subplots  180 2296.7481    

Total 359 6765.1769    

     ** p < 0.01 
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Table 8. Detailed analysis on basic contrasts of type A × C in the inter-sub-subplot stratum  

Stratum (4) - Analysis of sub-subplots 

Source DF SS MS F p 
Contrasts of type A × C 6 26.1696 4.3616 6.4942** 0.0000 

including:      

τ′9c  1 9.0845 9.0845 13.5267** 0.0003 

τ′19c  1 0.1064 0.1064 0.1584 0.6912 

τ′29c  1 4.8864 4.8864 7.2758** 0.0078 

τ39c′  1 0.6868 0.6868 1.0226 0.3136 

τ49c′  1 4.0281 4.0281 5.9978* 0.0155 

τ59c′ a 1 7.3774 7.3774 10.9848** 0.0012 

Rest 29 2173.1945 74.9377   

Error (4) 145 97.3840 0.6716   

Total (4) - sub-subplots  180 2296.7481    

** p < 0.01;  * p < 0.05 

For a complete discussion on study of the significance of contrasts we will 
show how to use the basic treatment contrasts to estimate any treatment contrasts 
(see, Section 2.3). They include, inter alia, any comparisons of each test variety 
effect with the standard variety effect within growth regulator, i.e. between 
interaction effects for 71 AA − , 72 AA − , 73 AA − , 74 AA − , 75 AA −  and 76 AA −  
within the factor C. Let us denote the mentioned contrasts by τ1s′ , τ2s′ , τ3s′ , 
τ4s′ , τ5s′  and τ6s′ , respectively. In Table 9 there are forms of them, their 

estimates, variance estimates of them and calculated values of test statistic F and 
corresponding p values used to test particular hypothesis of the form 

0=′τs:H*
04 . 

Consider now any contrast τ1s′  for instance between the test variety A1 
effect and standard variety ( 7A ) effect within growth regulator. It can be written 
(for the treatment combination form) as  

τ1s′  = [1, 0, 0, 0, 0, 0, -1] ⊗ [1, 1, 1, 1, 1] ⊗ [1, -1]τ. 
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Table 9.  Set of the elementary contrasts for the test varieties vs. standard within the growth regulator 

Basic contrasts Coefficients λ4h for the elementary contrasts 

j τ1s′  τ2s′  τ3s′  τ4s′  τ5s′  τ6s′  

9 26/5  26/5  26/5  - 26/5  - 26/5  - 26/5  

19 12/5  12/5  - 6/5  - 12/5  - 12/5  6/5  

29 34/5  - 34/5  0 34/5  - 34/5  0 

39 12/5  12/5  - 6/5  12/5  12/5  - 6/5  

49 34/5  - 34/5  0 - 34/5  34/5  0 

59 106/25  106/25  106/25  106/25  106/25  106/25  

4)(
∧
′τs  0.7597 -5.3277 -0.8403 -5.4173 -5.7110 -4.9360 

Estimated 
variances 

2.3319 2.3319 2.3319 2.3319 2.3319 2.3319 

F 0.2475 12.1722** 0.3028 12.5851** 13.9867** 10.4483** 

p 0.6196 0.0006 0.583 0.0005 0.0005 0.0015 

** p < 0.01 

It can be shown (see, Section 2.2) that this contrast is estimable in the sub-
subplot stratum (4). From Table 6 it is easily seen that in this stratum 35 basic 
contrasts τch′ , h = 1, 3, 5, 7,…, 69 are estimable. It means that any treatment 
contrast estimable in the stratum (4) can be expressed by them. Because of the 

δ−r - orthonormality of the vectors cj,  j = 1, 2,..., h, we may limit this set to 6 
vectors. So we obtain 

τ1s′ = τc926
5 ′ + τc1912

5 ′ + τc2934
5 ′ + τc3912

5 ′ + τc4934
5 ′ + τc59106

25 ′ . 

It is easy to check the contrast is estimated with full efficiency ( 1)(E 14 =′τs ) in 

the inter-sub-subplot stratum. Taking into account the estimates 4)(
∧
′ τhc , h = 9, 

19, 29, 39, 49, 59 (see, Table 6) the estimate of the contrast τ1s′  in the stratum 
(4) is equal to   



 STRATUM ANALYSIS FOR SPLIT-SPLIT-PLOT DESINS… 65 

 
 

41 )(
∧
′τs = )014.3(

26
5  + )(- 3262.0

12
5 + )2105.2(

34
5 + )8287,0(

12
5

− +   

 )007.2(
34

5  + )7161.2(
106

25
−  = 0.7597. 

From Table 7 we have that variance estimate of the error in the stratum (4) is 
equal to 6716.0ˆ 4 ==γ 4MSE . So the estimate of the variance of the contrast 

estimate is 2.3319, then F value = [ 41 )(
∧
′τs ]2 / 2.3319 = 0.2475 <1. 

It means that we fail to reject the hypothesis 0=′τ1
*
04 :H s declaring that 

there is no significant difference between the true average yield of the test 
variety number 1 and the true average yield of the standard variety within the 
growth regulator. 

Moreover, using information from Table 9 we can say conclusions 
connected with testing other hypotheses for any contrasts. The hypotheses 
associated with the contrasts τ2s′ , τ4s′ , τ5s′  and τ6s′  should be rejected only 
(p < 0.01). 
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