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Summary

In this text we will derive estimators of unknown parameters for growth urve model

with di�erent derease of dependeny in groups and we will ompare them for the ase

of two groups. We will use method of maximum likelihood and method of unbiased

estimating equations. This artile is a ontinuation of artile (Rusna£ko and �eºula

2015) in whih the used speial orrelation struture was introdued.
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1 Introdution

The growth urve model (GCM) represents onnetion between regression analysis

and analysis of variane and it has the following form

Y = XBZ + ε, E(ε) = 0, Var(ve ε) = Σ⊗ I, (1.1)
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where Yn×p is matrix of n p−dimensional observations, Xn×m is ANOVA matrix, Bm×r

is matrix of unknown parameters, Zr×p is matrix of regression onstants, εn×p is matrix

of random errors whih has normal distribution, In×n is identity matrix,Σp×p is variane

matrix of rows of matrix Y (variane matrix of a single observation) and ve operator

transforms a matrix into a vetor by staking the olumns of the matrix one underneath

the other. This model was introdued by Pottho� and Roy already in 1964. The variane
matrix ontains a lot of unknown parameters, therefore it is useful to redue their

number by onsidering a simpler struture. The most ommonly used strutures are

the uniform orrelation struture and the serial orrelation struture.

If the variane matrix has equal diagonal elements and equal o�-diagonal elements

we talk about a uniform orrelation struture, whih is of the form

Σ = σ2 [(1− ̺) I + ̺11′] = σ2




1 ̺ . . . ̺

̺ 1 . . . ̺
.

.

.

.

.

.

.

.

.

.

.

.

̺ ̺ . . . 1


 , (1.2)

where σ2 > 0 and ̺ ∈
(
− 1

p−1
, 1
)
are unknown parameters. Problem of this model an

be dereasing dependene among more remote observations in spae (or time), whih

is not re�eted in this struture.

Serial or �rst order autoregressive orrelation struture is natural for time series

and repeated measurements and is of the form

Σ = σ2




1 ̺ . . . ̺p−1

̺ 1 . . . ̺p−2

.

.

.

.

.

.

.

.

.

.

.

.

̺p−1 ̺p−2 . . . 1


 = σ2

(
̺|i−j|

)
= σ2

p∑

i=2

̺i−1Wi + σ2I, (1.3)

where σ2 > 0 and ̺ ∈ (−1, 1) are unknown parameters, Wk = (wij(k)) is p× p matrix

whose (i, j) entry

wij(k) =

{
1, if |i− j| = k − 1,

0, if |i− j| 6= k − 1,

for k = 2, . . . , p ≥ 3. But the dependene among observations may not be exponentially

dereasing. Therefore it is useful to onsider a model with slower derease of dependeny

than �rst-order autoregressive proess.

Let us onsider a orrelation struture of the form

Σ = σ2 [(1− ̺)I + ̺A] = σ2




1 ̺a1 ̺a2 . . . ̺ap−1

̺a1 1 ̺a1 . . . ̺ap−2

̺a2 ̺a1 1 . . . ̺ap−3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

̺ap−1 ̺ap−2 ̺ap−3 . . . 1




, (1.4)
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where σ2 > 0 and ̺ ∈ (−1, 1) are unknown variane parameters and the matrix A is the

known symmetri Toeplitz matrix with elements (1, a1, a2, . . . , ap−1) . This struture an
simulate a slower derease of dependene than exponential. Therefore it an be viewed

as a transition between the uniform and the serial orrelation struture. Estimators of

unknown parameters for this speial orrelation struture, their statistial properties

and their omparison are derived in (Rusna£ko and �eºula 2015).

In this artile we extend these issues by onsideration of di�erent derease of depen-

deny in the groups of the GCM. In the following setion we will introdue this problem

and we will derive estimators of unknown parameters based on unbiased estimating

equations and the method of maximum likelihood. We will show some simulations to

ompare them in the ase of two groups.

2 The GCM with di�erent derease of dependeny

in groups

Let us onsider growth urve model with t groups and di�erent derease of depen-

deny in these groups. Formally, we have model (1.1) with

Y =




Y1

Y2
.

.

.

Yt


 , X = diag (1n1

, 1n2
, . . . , 1nt

) , B = (β1, β2, . . . , βt)
′
, ε =




ε1
ε2
.

.

.

εt


 ,

where

E (εi) = 0, Var (ve εi) = Σi ⊗ Ini
, and Σi = σ2 [(1− ̺)I + ̺Ai] ,

where Yi and εi are ni × p matries, βi is vetor of unknown parameters orre-

sponding to i−th group, matries Ai are symmetri p × p Toeplitz matries with el-

ements (1, a1,i, a2,i, . . . , ap−1,i) and eah variane matrix Σi is positive semi-de�nite,

i = 1, 2, . . . , t. Using the transposed model we get

Λ = var (ve ε′) =




In1
⊗ Σ1 0 . . . 0
0 In2

⊗ Σ2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Int
⊗ Σt


 , (2.1)

so for using the method of unbiased estimating equations we estimate eah diagonal

blok using uniformly minimum variane unbiased invariant estimator of variane ma-

trix whih is for eah group in the form

Si =
1

ni − 1
Y ′
i M1ni

Yi =
1

ni − 1
Y ′
i

(
Ini

−
1

ni

1ni
1
′
ni

)
Yi, i = 1, 2, . . . , t. (2.2)

In the next subsetion we will derive estimators of unknown parameters based on

unbiased estimating equations and estimators (2.2).
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2.1 Estimators based on unbiased estimating equations

To use this method of estimating we need mean value of trae and mean value of

sum of all elements of eah estimator of variane matrix (2.2). For simpliity let us

denote

n =

t∑

j=1

nj and Ri =

p−1∑

j=1

jap−j,i, i = 1, 2, . . . , t.

Sine estimators (2.2) are unbiased, then

E (Tr (Si)) = pσ2
and E (1′Si1) = σ2 (p + 2̺Ri) , i = 1, 2, . . . , t.

Thus, unbiased estimating equations are

t∑

i=1

niTr(Si)− npσ̂2 = 0,

t∑

i=1

ni1
′Si1− σ̂2

t∑

i=1

ni (p+ 2̺̂Ri) = 0,

whih implies that estimators of unknown parameters based on unbiased estimating

equations are of the form

σ̂2 =

∑t

i=1 niTr(Si)

np
(2.3)

and

̺̂= np

2
∑t

i=1 niRi

[ ∑t

i=1 ni1
′Si1∑t

i=1 niTr(Si)
− 1

]
. (2.4)

To derive properties of these estimators we use the fat that for estimators (2.2) hold

Var(ve Si) =
1

ni − 1
(Ip2 +Kpp)(Σi ⊗ Σi),

whih implies

Var(Tr (Si)) = (veIp)
′
Var (veSi) (veIp) =

2

ni − 1
Tr(Σ2

i ),

Var(1′Si1) = (veJp)
′
Var (veSi) (veJp) =

2

ni − 1
(1′Σi1)

2,

Cov(1′Si1,Tr (Si)) = (veJp)
′
Var (veSi) (veIp) =

2

ni − 1
1
′Σ2

i1, i = 1, 2, . . . , t,

where Jp = 1p1
′
p and Kpp is the ommutation matrix (see e.g. Ghazal and Neudeker

2010). As we mentioned in (Rusna£ko and �eºula 2015) the following properties of eah

variane matrix Σi hold

Tr

(
Σ2

i

)
= σ4

[
p+ 2̺2

p−1∑

j=1

ja2p−j,i

]
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and

1
′Σ2

i1 = σ4p+ 4σ4̺Ri + 2σ4̺2Ti,

where

Ti =

p−1∑

j=1

ja2p−j,i + 2

[
p−2∑

j=2

p−j−1∑

k=1

kaj,iap−k,i + a1

p−2∑

j=1

(2j − 1)ap−j,i +

+

⌈ p

2
⌉−1∑

j=2

p−j−1∑

k=j+1

(k − j)aj,iap−k,i

]
+ si,

and

si =





2
∑ p

2
−1

j=1 ja2p
2
−j,i

if p is even,

∑⌈ p

2
⌉−1

j=1 (2j − 1)a2⌈ p

2
⌉−j,i

if p is odd.

Now we an derive properties of estimators (2.3) and (2.4).
The estimator of parameter σ2

is learly unbiased, so its mean square error is equal

to its variane and it holds

MSE

(
σ̂2
)
= Var

(
σ̂2
)
=

2σ4

n2p2

(
p

t∑

i=1

n2
i

ni − 1
+ 2̺

t∑

i=1

n2
i

ni − 1

p−1∑

j=1

ja2p−j,i

)
.

But the estimator of the parameter ̺ is biased, as usually. To derive approximate

properties of this estimator we will use a Taylor expansion. Using this we an �nd

expansions of the mean and the variane of the ratio of two random variables in the

form

E

(
G

H

)
=

E(G)

E(H)
−

Cov(G,H)

E

2(H)
+

E(G)

E

3(H)
Var(H) +R3, (2.5)

Var

(
G

H

)
=

Var(G)

E

2(H)
−

2E(G)

E

3(H)
Cov(G,H) +

E

2(G)

E

4(H)
Var(H) +R3, (2.6)

where R3 is the remainder of Taylor series of 3rd order. Using these relations we get

that the mean value of estimator (2.4) is

E(̺̂) = ̺−
2̺

np

(
2∑t

i=1 niRi

t∑

i=1

n2
i

ni − 1
Ri −

1

n

t∑

i=1

n2
i

ni − 1

)
̺+

+
1∑t

i=1 niRi

t∑

i=1

n2
i

ni − 1

(
Ti −

p−1∑

j=1

ja2p−j,i

)
̺2−

−
2

np

t∑

i=1

n2
i

ni − 1

p−1∑

j=1

ja2p−j,i̺
3 +O

(
n−2
)
,
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and its variane is

Var(̺̂) = 1

2
(∑t

i=1 niRi

)2

[
p(p− 1)

t∑

i=1

n2
i

ni − 1
+ 4(p− 2)

t∑

i=1

n2
i

ni − 1
Ri̺+

+ 2
t∑

i=1

n2
i

ni − 1

(
2R2

i − 2Ti +

p−1∑

j=1

ja2p−j,i

)
̺2−

−
4
∑t

i=1 niRi

np

(
4

t∑

i=1

n2
i

ni − 1
Ri −

∑t

i=1 niRi

n

t∑

i=1

n2
i

ni − 1

)
̺2−

−
8
∑t

i=1 niRi

np

t∑

i=1

n2
i

ni − 1

(
Ti −

p−1∑

j=1

ja2p−j,i

)
̺3+

+
8
(∑t

i=1 niRi

)2

n2p2

t∑

i=1

n2
i

ni − 1

p−1∑

j=1

ja2p−j,i̺
4

]
+O

(
n−2
)
.

The mean square error of the estimator of parameter ρ is

MSE (̺̂) = p(p− 1)

2
(∑t

i=1 niRi

)2
t∑

i=1

n2
i

ni − 1
+

2(p− 2)
(∑t

i=1 niRi

)2
t∑

i=1

n2
i

ni − 1
Ri̺+

+

[
1∑t

i=1 niRi

[
1∑t

i=1 niRi

(
t∑

i=1

n2
i

ni − 1

(
2R2

i − 2Ti +

p−1∑

j=1

ja2p−j,i

))
−

−
8

np

t∑

i=1

n2
i

ni − 1
Ri

]
+

2

n2p

t∑

i=1

n2
i

ni − 1

]
̺2−

−
4

np
∑t

i=1 niRi

t∑

i=1

n2
i

ni − 1

(
Ti −

p−1∑

j=1

ja2p−j,i

)
̺3+

+
4

n2p2

t∑

i=1

n2
i

ni − 1

p−1∑

j=1

ja2p−j,i̺
4 +O

(
n−2
)

and the mean square error between the estimators has the form

MSE

(
σ̂2, ̺̂

)
=
2σ2

np

[(
2∑t

i=1 niRi

t∑

i=1

n2
i

ni − 1
Ri −

1

n

t∑

i=1

n2
i

ni − 1

)
̺+

+
1∑t

i=1 niRi

t∑

i=1

n2
i

ni − 1

(
Ti −

p−1∑

j=1

ja2p−j,i

)
̺2−

−
2

np

t∑

i=1

n2
i

ni − 1

p−1∑

j=1

ja2p−j,i̺
3

]
+O

(
n−2
)
.
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2.2 Maximum likelihood estimators

In this subsetion we derive maximum likelihood estimators of unknown parameters.

Let us onsider one dimensional model from transposed growth urve model in the form

y = Wβ + e, where y = ve Y ′, W = X ⊗ Z ′, β = ve B′, e = ve ε′, E e = 0 and

variane matrix Λ of e is of the form (2.1). Its inverse and determinant are in the form

Λ−1 =




In1
⊗ Σ−1

1 0 . . . 0
0 In2

⊗ Σ−1
2 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Int
⊗ Σ−1

t


 , and |Λ| =

t∏

i=1

|Σi|
ni.

Let us denote Σi = σ2Fi(̺), for i = 1, 2, . . . , t and

Q =




In1
⊗ F−1

1 (̺) 0 . . . 0
0 In2

⊗ F−1
2 (̺) . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Int
⊗ F−1

t (̺)


 .

Then, log-likelihood funtion is of the form

l(β, σ2, ̺, y) =−
np

2
ln(2π)−

np

2
ln(σ2)−

1

2

t∑

i=1

ni ln |Fi(̺)|−

−
1

2σ2
(y −Wβ)′Q(̺)(y −Wβ).

(2.7)

Taking derivatives with respet to parameters β, σ2
and ρ we get equations

W ′Q(̺)Wβ = W ′Q(̺)y, (2.8)

npσ2 = (y −Wβ)′Q(̺)(y −Wβ), (2.9)

−σ2

t∑

i=1

niTr

[
F−1
i (̺)(Ai − I)

]
= (y −Wβ)′

∂ Q(̺)

∂̺
(y −Wβ). (2.10)

From the �rst equation it is lear that the maximum likelihood estimator of parameter

β is of the form

β̂
M

= [W ′Q(̺)W ]
−1

W ′Q(̺)y. (2.11)

Inserting (2.11) into (2.9) and (2.10) produes a nonlinear system of equations for

MLEs of ̺ and σ2, whih we have to solve numerially. Obtained value of ̺ is then

inserted into (2.11) to get MLE of β.

Asymptoti varianes of these estimators we get from inverse of Fisher information

matrix. To get it we need seond derivatives of the log-likelihood funtion (2.7) with
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respet to unknown parameters σ2
and ρ. It is well known that for a random vetor τ

with E(τ) = µ and Var(τ) = Ξ

E (τ ′Λτ) = Tr(ΛΞ) + µ′Λµ. (2.12)

Using the previous formula we get

E

∂2l(β, σ2, ̺, y)

∂ (σ2)2
= −

np

2σ4
,

E

∂2l(β, σ2, ̺, y)

∂̺2
= −

1

2

t∑

i=1

niTr

[
F−1
i (̺) (Ai − I)

]2
,

E

∂2l(β, σ2, ̺, y)

∂σ2∂̺
= −

1

2σ2

t∑

i=1

niTr

[
F−1
i (̺)(Ai − I)

]
.

Construting the Fisher information matrix I(σ2,̺) we get that asymptoti varianes of

maximum likelihood estimators of unknown parameters are

Var (σ̂2
M

) =
1

2|I(σ2,̺)|

t∑

i=1

niTr

[
F−1
i (̺)(Ai − I)

]2

and

Var (ρ̂
M

) =
np

2σ4|I(σ2,̺)|
.

2.3 Comparisons and simulations for the ase of two groups

Let us onsider the growth urve model with two groups and di�erent derease of

dependeny in them. In this setion we ompare maximum likelihood estimators with

estimators based on unbiased estimating equations on the basis of their varianes for

this ase. Some simulations of ratios

Var σ̂2

Var σ̂2

M

−1 and Var ̺̂

Var ̺̂
M

−1 on the admissible interval

of positive semi-de�niteness of variane matrix for small values of time points (3-6)

and di�erent matries A1 and A2, namely we used symmetri Teoplitz matries with

elements (1, 1, 1
2
, 1
3
), (1, 1, 1

2
, 1
4
), (1, 1, 1, 1

2
) and (1, 1, 1, 1

3
), are depited in the following

pitures.
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Figure 1:

Var σ̂2

Var σ̂2

M
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Figure 2:

Var ̺̂

Var ̺̂
M

− 1

We an see that the maximum likelihood estimator of parameter ̺ is better than the

estimator of this parameter based on unbiased estimating equation beause all values

of funtion

Var ̺̂

Var ̺̂
M

− 1 are positive. On the other hand values of funtion

Var σ̂2

Var σ̂2

M

− 1 are

in some ases positive and in some ases negative. However, the omparison is not too

fair, sine we ompare the �rst order approximation of small sample variane on one

side with exat asymptoti variane on the other side.
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