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Summary
The problem of estimating a probability of success in a Binomial model is considered.
The classical estimator is compared with the estimator which uses the information
about non-homogeneity of the sample. An application to the problem of estimating
defectiveness in sampling acceptance inspection is shown.
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One of the aspects of the sampling acceptance investigations provided in
statistical quality control is estimating the defectiveness of a batch of go-
ods. Each item is observed whether it is defective or not.The defective-
ness is measured by the percentage of the defective items (“off-types”).
To do so the sample of size n is taken and the number of off-types is
counted. To be more formal, let ξ be a number of off-types in n trials.
This is a random variable binomially distributed. The statistical model
for ξ is

({0, 1, . . . , n}, {Bin(n, θ), θ ∈ (0, 1)})
and the unbiased estimator with minimal variance of the parameter θ
is θ̂c =

ξ
n . The variance of that estimator equals

D2θ θ̂c =
θ(1− θ)
n

for all θ.
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Suppose now that the defectiveness depends on a supplier. For sim-
plicity assume that there are two different suppliers, which results in
defectiveness θ1 and θ2, respectively. We are interested in estimation the
overall defectiveness θ. The question is, does the information of those
different suppliers improve the estimation of θ?
Let the contribution of the first supplier be w1 · 100%. Then the overall
defectiveness is

θ = w1θ1 + w2θ2,

where w2 = 1 − w1. Let n1 and n2 denote the sample sizes from the
first and the second supplier, respectively. The whole sample size equals
n = n1 + n2.
Now we have two random variables

ξ1 ∼ Bin(n1, θ1), ξ2 ∼ Bin(n2, θ2),

where θ = w1θ1 + w2θ2 and w1 + w2 = 1.
The values θ1 and θ2 as well as θ are unknown. It is easy to note, that
for a given θ parameter θ1 may take on the values from the interval(

max
{
0,
θ − w2
w1

}
, min

{
1,
θ

w1

})
.

Denote by aθ the left end of the above interval and by bθ its right end,
i.e.

aθ = max
{
0,
θ − w2
w1

}
and bθ = min

{
1,
θ

w1

}
.

Consider a random variable

θ̂w = w1
ξ1
n1
+ w2

ξ2
n2
.

It is an unbiased estimator of θ:

Eθ θ̂w = Eθ

(
w1
ξ1
n1
+ w2

ξ2
n2

)
=

1
bθ − aθ

∫ bθ
aθ

(
w1
n1
Eθ1ξ1 +

w2
n2
E θ−w1θ1

w2

ξ2

)
dθ1

=
1

bθ − aθ

∫ bθ
aθ

(
w1
n1
n1θ1 +

w2
n2
n2

(
θ − w1θ1
w2

))
dθ1

= θ.
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The variance of that estimator equals:

D2θ θ̂w = D
2
θ

(
w1
ξ1
n1
+ w2

ξ2
n2

)
=

1
bθ−aθ

∫ bθ
aθ

(
w21
n21
D2θ1ξ1 +

w22
n22
D2θ−w1θ1

w2

ξ2

)
dθ1

=
1
bθ−aθ

∫ bθ
aθ

w21θ1(1− θ1)
n1

+
w22
θ−w1θ1
w2

(
1− θ−w1θ1w2

)
n2

 dθ1
=

1
bθ−aθ

∫ bθ
aθ

(
w21θ1(1−θ1)
n1

+
(θ−w1θ1) (1−θ−w1(1−θ1))

n− n1

)
dθ1.

It may be written as

2n1w1(b3θ−a3θ)+3w1(n1(1−2θ)−nw1)(b2θ−a2θ)+6n1θ(θ+w1−1)(bθ−aθ)
6n1(n− n1)(bθ − aθ)

or (for w1 ≤ 0.5)

D2θ θ̂w =


θ(3n1+3nw1−6n1w1−2nθ)

6n1(n−n1) , for 0 < θ < w1,

nw21−3n1w1+6θ(1−θ)
6n1(n−n1) , for w1 ≤ θ ≤ 1− w1,

(1−θ)(3n1+3nw1−6n1w1−2n(1−θ))
6n1(n−n1) , for 1− w1 < θ < 1.

The question is whether the variance D2θ θ̂w is smaller than the variance
D2θ θ̂c. It may be seen that for given w1 the variance D

2
θ θ̂w depends on

n1 and may be smaller as well as greater than D2θ θ̂c. We would like to
find optimal n1, i.e. the size of the first sample which gives the minimal
variance D2θ θ̂w (the overall sample size n is treated as given). With no
loss of generality it may be assumed that w1 ≤ 0.5.
It is easy to note, that
1. D2θ θ̂w = D

2
1−θ θ̂w,

2. D20 θ̂w = 0,

3. maxθ∈⟨0,1⟩D2θ θ̂w = D
2
0.5θ̂w and maxθ∈⟨0,1⟩D

2
θ θ̂c = D

2
0.5θ̂c.

Hence, it is enough to find the optimal n1 for θ = 0.5, i.e. n1 such that
D20.5θ̂w attains its minimum.
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For θ = 0.5 we have a(0.5) = 0 and b(0.5) = 1. After some calculations
we obtain:

D20.5θ̂w =
∫ 1
0

(
w21θ1(1− θ1)
n1

+
(0.5− w1θ1) (0.5− w1(1− θ1))

n− n1

)
dθ1

=
0.25n1 − 0.5n1w1 + nw21/6

n1(n− n1)
.

The value of n∗1 minimizing the variance is

n∗1 = pn, where p =
w1

w1 +
√
1.5− 3w1 + w21

.

Since n∗1 may not be an integer, so the optimal size n
opt
1 of the first

sample is n∗1 rounded to the nearest integer. Examples of numerical
solutions are given in Table 1 (for n = 100). For comparison, in the last
column of Table 1 the variance D20.5θ̂c is given.

Table 1. Minimal variances D20.5θ̂w for n = 100

w1 p nopt1 D20.5θ̂w D20.5θ̂c
0.05 0.0412 4 0.0024523 0.0025
0.10 0.0833 8 0.0024004 0.0025
0.15 0.1265 13 0.0023431 0.0025
0.20 0.1710 17 0.0022797 0.0025
0.25 0.2171 22 0.0022096 0.0025
0.30 0.2653 27 0.0021309 0.0025
0.35 0.3163 32 0.0020412 0.0025
0.40 0.3710 37 0.0019377 0.0025
0.45 0.4312 43 0.0018156 0.0025
0.50 0.5000 50 0.0016667 0.0025

Note that the minimal variances D20.5θ̂w are smaller than D
2
0.5θ̂c. It may

be easily checked that for n1 = n
opt
1 the variance D

2
θ θ̂w is smaller than

D2θ θ̂c for all θ ∈ (0, 1). In Figure 1 the variances D2θ θ̂w and D2θ θ̂c are
plotted as the functions of probability θ.

In Table 2, the relative error of the estimation is shown. Precisely, one
of the indicators of the goodness of the estimator is its relative error.
The probability of not making a relative mistake less than given ε > 0



A REMARK ON ESTIMATING 13

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
.........
..........
.........
........
.........
..........
.........
..........
..........
..........
..........
.........
..........
..........
..........
..........
..........
..........
.........
...........
..........
..........
..........
............
...........
...........
...........
...........
.............
............
.............
............
...............
...............
................
....................
...........................
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................D2θ θ̂c

......... ..
.......
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......... .
........ .........

......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ..................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......... ......... ......

......... ......... ......... ......D2θ θ̂w (w1=0.1)

..................
.........
.......
......
......
.....
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.......
........
.........
........................................................................................................................................................................................................................

...............................D2θ θ̂w (w1=0.4)

Fig. 1. Variances of estimators for n = 100

Table 2. n = 100, n1 = 37, ε = 0.1

θ Pθ

{
|θ̂w−θ|
θ < ε

}
Pθ

{
|θ̂c−θ|
θ < ε

}
0.01 0.74041 0.73576
0.02 0.54831 0.54407
0.03 0.45685 0.45263
0.04 0.40104 0.39672
0.05 0.36264 0.35816
0.10 0.40293 0.38216
0.15 0.44677 0.42516
0.20 0.49237 0.46774
0.25 0.54143 0.51095
0.30 0.60364 0.55486
0.35 0.66597 0.59685
0.40 0.72788 0.64163
0.45 0.75671 0.68302
0.50 0.79292 0.76770

by considered estimators are calculated. Numerical results are given for
w1 = 0.4 and n1 = 37 (which is optimal for w1 = 0.4, see Table 1) and
ε = 0.1 (i.e. the relative error does not exceed 10%). It is seen that the
probability of “correct” estimation is higher for θ̂w than for θ̂c.

Probabilities given in Table 2 may be of course calculated for other w1,
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n and ε. The distribution of the estimator θ̂w is given by the formula:

Pθ

{
θ̂w = u

}
=
n1∑
x1=0

Pθ

{
ξ1 = x1, ξ2 =

n2
w2

(
u− w1

x1
n1

)}
.

The probability Pθ {ξ1 = x1, ξ2 = x2} for x1 = 0, 1, . . . , n1 and x2 =
0, 1, . . . , n2 equals

1
bθ − aθ

∫ bθ
aθ

f (x1;n1, θ1) f
(
x2;n2,

θ − w1θ1
w2

)
dθ1,

and equals 0 elsewhere. Here

f (x;n, θ) =
(
n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n.

We consider the relative error of the estimator. It seems quite natural
to consider the absolute error, i.e. |θ̂c − θ| or |θ̂w − θ|. This kind of
error is not a good measure of goodness in the problem of estimation of
the probability of success, because the binomial distribution for small
(and large) values of θ is highly skew (its coefficient of skewness equals
(1− 2θ)/

√
nθ(1− θ)).

The advantages of the estimator θ̂w were shown. Hence in practice,
it is recommended to use the information of different defectiveness. It
will be interesting to generalize the results above to more than two
“subpopulations”. The work on the subject is in progress.

Bibliographical note. All necessary information on binomial distri-
bution and the estimation of probability of success may be found in any
textbook on probability and mathematical statistics.


