
Colloquium Biometricum 47 

2017, 2434 

ON THE EFFICIENCY OF ORTHOGONAL TREATMENT 

CONTRASTS IN MULTISTRATUM INCOMPLETE SPLIT-SPLIT-

PLOT DESIGNS CONSTRUCTED BY SQUARE LATTICE 

DESIGNS 

Katarzyna Ambroży-Deręgowska, Iwona Mejza 

Department of Mathematical and Statistical Methods 

Poznań University of Life Sciences 

e-mail: ambrozy@up.poznan.pl; iwona.mejza@up.poznan.pl 

Summary 

We construct an incomplete split-split-plot design for three factor experiments. The method is 

based on a semi-Kronecker (Khatri-Rao) product of three matrices. We use two square lattice 

designs for whole plot treatments and subplot treatments and also a randomized complete block 

design for sub-subplot treatments. So in the paper we consider a situation when the split-split-plot 

design is incomplete with respect to two factors. The considered design is characterized with respect 

to general balance property. We give stratum efficiency factors useful in planning incomplete 

experimental designs and in the statistical analysis. 

Key words and phrases: square lattice design, general balance, incomplete split-split-plot design, 

Khatri-Rao product of matrices, stratum efficiency factors. 
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1. Introduction 

Incomplete split-split-plot (shortly, SSP) designs are an alternative for 

orthogonal (complete) SSP designs which are usually used for three or more factor 
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experiments. In both cases the experimental blocks should have suitable structure 

with nested units (whole plots, subplots and sub-subplots). A number of them is 

related to the applied method of a construction of the design and desirable 

statistical properties. Additionally, the SSP design is required to satisfy one of the 

most important principles in the theory of block designs – homogeneity of units 

within given block structure, the whole plot structure and the subplot structure. 

Planned incompleteness of the SSP design is one of the ways to overcome 

difficulties when the number of the suitable units is insufficient to allocate the 

whole plot treatments or/and subplot treatments or/and sub-subplot treatments 

inside the blocks. 

We consider the incomplete SSP designs with orthogonal block structure only 

(Nelder, 1965a, 1965b). Modeling and analysis of data obtained from such 

experiments were presented, for instance, in Mejza I. (1997a, 1997b). 

Additionally, some characterization of the incomplete SSP designs may be found 

in Ambroży and Mejza (2011, 2013), Ambroży-Deręgowska and Mejza (2014, 

2015). Authors have mainly considered construction of the SSP designs for which 

the incidence matrix with respect to blocks is Kronecker product of incidence 

matrices for subdesigns (efficiency or partial efficiency balanced designs). The 

SSP designs obtained by this way usually have a large number of units, which is 

sometimes unprofitable situation (e.g. because of a cost of an experiment).  

In the present paper we consider a construction procedure of an incomplete 

SSP design based on a semi-Kronecker product called also Khatri-Rao product of 

matrices. This method leads to new designs with the number of units less than the 

number of units obtained by using the usual Kronecker product. Square Lattice 

Designs (shortly, SLDs), (see e.g . Raghavarao, 1971; Caliński and Kageyama, 

2003) for the whole plot treatments and for the subplot treatments are used to 

construct new SSP designs. The statistical properties, such general balance and 

stratum balance (e.g. Houtman and Speed, 1983; Mejza S., 1992) of the final 

designs are examined in the paper, see (4.6). Planning and an analysis of data 

obtained from such experiments can be performed using efficiency factors 

presented in the present paper. 

2. Material structure 

Let us take a three-factor experiment of an incomplete SSP type in which the 

first factor, say A, has s levels A1, A2, …, As, the second factor, say B, has t levels 

B1, B2, …, Bt and the third factor, say C, has w levels C1, C2, …, Cw. Thus the 

number v = stw denotes the number of all treatment combinations in the 

experiment. 
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There is assumed the experimental material can be divided into b blocks with 

k1 whole plots. We assume also, that the blocks can be grouped into r replicates 

(superblocks, resolution classes). Then, each whole plot inside the blocks is 

divided into k2 subplots with k3 sub-subplots. The s ( s > k1) levels of factor A 

(whole plot treatments) are randomly allotted to the whole plots within each block, 

t (t > k2) levels of factor B (subplot treatments) are randomly allotted to the 

subplots within each whole plot, and the w (w = k3) levels of factor C (sub-subplot 

treatments) are randomly allotted to the sub-subplots within each subplot.  

In the paper it is assumed the SSP design is incomplete with respect to the 

levels of the factors A and B, and complete with respect to the levels of the factor 

C ( k1 < s,  k2 < t,  k3 = w), i.e. not all v treatment combinations are inside each 

block. The decision which of them occur in the blocks is based on the construction 

method given in Section 4. 

3. Linear model 

As a result of certain assumptions and performed four randomization 

processes in the experiment the mixed linear model of vector y of n )( 321 kkbk  

observations has the form: 

 𝐲 = 𝚫′𝛕 + ∑ 𝐃𝑓
′ 𝛈𝑓 + 𝐞4

𝑓=1 , (3.1) 

and the following properties: 

 E(𝐲) = 𝚫′𝛕,      Cov(𝐲) = 𝐕()  (3.2) 

where 𝚫′ is a known design matrix for stwv   treatment combinations, τ   

(v  1) is the vector of fixed treatment combination parameters, 𝐃1
′ , 𝐃2

′ , 𝐃3
′ , 𝐃4

′  are 

respectively, (n  b), (n  bk1), (n  bk1k2), (n  bk1k2k3) - design matrices for 

blocks, the whole plots (within the blocks), the subplots (within the whole plots 

inside the blocks), and  the sub-subplots (within the subplots inside the whole plots 

and blocks). 

The fη  (f = 1, 2, 3, 4) are, respectively, random effect vectors of the blocks, 

the whole plots, the subplots, the sub-subplots.  
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According to the assumed orthogonal block structure of the considered SSP 

design, the covariance matrix (3.2) can be written as  


4

0f
ff Py)Cov( , where 

fP  are a family of known pairwise orthogonal projection operators (projectors) 

summing to the identity matrix (cf. Houtman and Speed, 1983). The range space 

}{ fP  of fP , f = 0, 1,.., 4, is termed the f-th stratum of the model, and }{ f  are 

unknown strata variances. So this model can be analysed using the methods based 

on Nelder’s approach to the multistratum experiments (Nelder, 1965a, 1965b). In 

the SSP model there are five strata, i.e. the total area stratum (zero stratum), the 

inter-block stratum (the first stratum), the inter-whole plot stratum (the second 

stratum), the inter-subplot stratum (the third stratum) and the inter-sub-subplot 

stratum (the fourth stratum). 

The considered SSP design will be characterized with respect to stratum 

efficiencies for chosen groups of contrasts among treatment combination 

parameters with regard to general balance property (cf. Houtman and Speed, 1983, 

Mejza S., 1992). A measure of stratum information about the contrasts is defined 

by efficiency factors. They are  calculated as eigenvalues of information matrices 

for the treatment combinations, fA , f = 1, 2, 3, 4, with respect to 


r , where 

)/1...,,/1,(1/diag 21 vrrr


r , and ri   (i = 1, 2,…, v) denote replications of the v 

treatment combinations. 

4. Method of construction 

Now we introduce the semi-Kronecker product of three matrices (see, Khatri 

and Rao, 1968, Rao and Mitra, 1971, Ambroży and Mejza, 2003) that will be used 

to construct the incomplete SSP design. 

Let  

𝐃 = [𝐃1 ⋮ 𝐃2 ⋮ ⋯ ⋮ 𝐃𝑟], 𝐄 = [𝐄1 ⋮ 𝐄2 ⋮ ⋯ ⋮ 𝐄𝑟],   𝐅 = [𝐅1 ⋮ 𝐅2 ⋮ ⋯ ⋮ 𝐅𝑟]  

be  three partitioned matrices with the same number of partitions (equal to r). 

Definition. The semi-Kronecker product of three matrices D, E, F given above 

will be as follows: 

𝐃̃𝐄̃𝐅 = [𝐃1𝐄1𝐅1 ⋮ 𝐃2𝐄2𝐅2 ⋮ ⋯ ⋮ 𝐃𝑟𝐄𝑟𝐅𝑟], 
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where  denotes the usual Kronecker product of two matrices. 

Let AN , BN  be incidence matrices of so called generating subdesigns for the 

factors A and B, respectively. In this construction the matrices 

 𝐍𝐴 = [𝐍𝐴1
⋮ 𝐍𝐴2

⋮ ⋯ ⋮ 𝐍𝐴𝑟
]  and 𝐍𝐵 = [𝐍𝐵1

⋮ 𝐍𝐵2
⋮ ⋯ ⋮ 𝐍𝐵𝑟

] (4.1) 

are the incidence matrices of square lattice designs (SLD), (e.g. Raghavarao, 

1971): SLD(𝑎1
2, 𝑟, 𝑎1) and SLD(𝑎2

2, 𝑟, 𝑎2) with the same number of replicates r, 

where 𝐍𝐴𝑖
(𝑎1

2 × 𝑎1) and 𝐍𝐵𝑖
(𝑎2

2 × 𝑎2) correspond to these replicates with 

𝑎1(= 𝑘1) and 𝑎2(= 𝑘2) plots per block (i.e. the whole plots inside each block and 

the subplots inside each whole plot in the SSP design, respectively), and 𝑎1
2 = 𝑠 

and 𝑎2
2 = 𝑡  denote the number of A treatments and B treatments while 

𝑟 ≤ 𝑎1 + 1, 𝑟 ≤ 𝑎2 + 1  respectively.  

While rwC 11N   is an incidence matrix of a randomized complete block 

(RBD) design (for the factor C). 

It is known generally the SLDs are resolvable designs such that for any pair 

of different superblocks, any block of one of them and any block of another 

superblock contain just one common treatment. From this fact we obtain some 

relations 

11 aa INN 
ii AA ,  

22 aa INN 
ii BB ,   

22 aa 11NN 
ji BB ,        (4.2) 

where i, j = 1, 2,…, r, ji  . 

In the SSP design considered we can express the incidence matrix 1N  (with 

respect to the blocks) as 

 rwBACBA 11NNNNNN ~~~~
1  

 [𝐍𝐴1
𝐍𝐵1

𝟏𝑤 ⋮ 𝐍𝐴2
𝐍𝐵2

𝟏𝑤 ⋮ ⋯ ⋮ 𝐍𝐴𝑟
𝐍𝐵𝑟

𝟏𝑤]. (4.3) 

General forms of other incidence matrices N2 (with respect to the whole plots) 

and N3 (with respect to the subplots) are not unique. However, corresponding to 

them concurrence matrices 𝐍𝑖𝐍𝑖
′, i = 2, 3, are unique (see (4.5)). But if we arrange 

the whole plots and subplots in suitable orders we can express N2 and N3 as follows 

 𝐍2 = [𝐈𝑎1
2𝐍𝐵1

𝟏𝑤 ⋮ 𝐈𝑎1
2𝐍𝐵2

𝟏𝑤 ⋮ ⋯ ⋮ 𝐈𝑎1
2𝐍𝐵𝑟

𝟏𝑤], (4.4) 
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𝐍3 = [𝐈𝑎1
2𝐈𝑎2

2𝟏𝑤 ⋮ 𝐈𝑎1
2𝐈𝑎2

2𝟏𝑤 ⋮ ⋯ ⋮ 𝐈𝑎1
2𝐈𝑎2

2𝟏𝑤]. 

In this method of the construction the number of the treatment combinations 

is equal to  𝜈 = 𝑠𝑡𝑤 = 𝑎1
2𝑎2

2𝑤, the number of the blocks is 𝑏 = 𝑟𝑎1𝑎2 and the 

number of all units is 𝑛 = 𝑏𝑘1𝑘2𝑘3 = 𝑟𝑎1
2𝑎2

2𝑤. 

Now, applying (4.3) and (4.4) the concurrence matrices take the forms: 

,))()((
1

11  


r

i
wwiBiA
11NNNNNN

iBiA

 ))((
1

22 2
1

w

r

i
wBa i
11NNINN  


iB

,          (4.5) 

)(
1

33 2
2

2
1

 


r

i
wwaa
11IINN .  

To obtain stratum efficiency factors we have to check if the incomplete SSP 

design is generally balanced (cf. Houtman and Speed, 1983, Mejza S., 1992). 

From (4.2) and (4.5) we can see that the concurrence matrices iiNN  , i = 1, 2, 3, 

are commutative, i.e. 

 ijji NNNNNNNN  ijji , (4.6) 

hold for i  j,  i, j = 1, 2, 3. 

From (4.6) we can obtain that considered SSP designs are generally balanced. 

From this fact results the information matrices fA , f = 1, 2, 3, 4, have the same set 

of eigenvectors (with respect to 
δ

r ) defining the orthogonal (basic) contrasts. 

Hence, if a group of the same contrasts is estimable in two or more different strata, 

we have two possibilities. We can perform a statistical analysis of these contrasts 

in each stratum separately only or combine the obtained information on these 

contrasts from the relevant strata (see e.g., Caliński and Kageyama, 2000). 

However, each of these methods involves loss of information in the 

estimation and detailed testing associated with these contrasts. You can limit this 

loss, for example, if the contrasts of experimental interest are estimated with full 

efficiency (as in the proposed construction method), see Table 1. 

Finally, the matrices fA  are the following: 

v
v

r
JA 0 ,   v

v

r

waa
JNNA  11

21

1

1
,  11

21

22

2

2

11
NNNNA 

waawa
, 
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22

2

333

11
NNNNA 

waw
,  334

1
NNIA 

w
r v .        (4.7) 

Eigenvalues of the matrices (4.7) with respect the replicates, called stratum 

efficiency factors of the SSP design, corresponding to the orthogonal contrasts are 

given in Table 1. 

Table 1.  Stratum efficiency factors of the SSP design 

Type of 

contrast 
df 

                Strata 

I II III IV 

A 1
2

1 a  1/r 1  1/r   

B 1)1( 2

2

2  ara    1  

 )1( 2 ar  1/ r  1  1/r  

C w  1    1 

AB )1)(1( 21  aar  1/ r  1  1/r  

 )1)(( 21

2

1  aaar   1/ r 1  1/r  

 )1)1()(1( 2

2

2

2

1  araa    1  

AC )1)(1(
2

1  wa     1 

BC )1)(1(
2

2  wa     1 

ABC )1)(1)(1(
2

2

2

1  waa     1 

I – the inter-block stratum, II – the inter-whole plot stratum, III – the inter-subplot stratum, IV – 

the inter-sub-subplot stratum   

5.  Example and discussion 

To illustrate the theory presented in the paper, consider a (4  9  2) - 

experiment arranged in the incomplete SSP design. The A treatments and the B 

treatments are allocated in the different balanced lattice designs with the incidence 

matrices )::(
321 AAAA NNNN   (SLD(4, 3, 2)) and )::(

321 BBBB NNNN   

(SLD(9, 3, 3)), respectively. Assume that these incidence matrices have the 

following forms (see Clatworthy, 1973): 
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The C treatments occur in a randomized complete block design. Then the 

incidence matrix 1N  of the incomplete SSP design as follows 

321
~~ 11NNN  BA . 

To present a sample layout of the considered SSP design we introduce an 

abbreviation.  

Let }, |,{ 21 C|CB,B,BAA pmlji  denotes a block such that ji AA , , where                     

i, j  {1, 2, 3, 4}, i  j, are the whole plot treatments inside the block, ,,, pml BBB  

where l, m, p  {1, 2, 3, 4, 5, 6, 7, 8, 9}, l  m  p, are the subplot treatments in 

each whole plot and 21, CC  are the sub-subplot treatments in each subplot inside 

the block. 

 Then the incomplete SSP design can be expressed by the following way: 

{A1, A2 | B1, B2, B3 | C1, C2},    {A1, A2 | B4, B5, B6 | C1, C2}, 

{A1, A2 | B7, B8, B9 | C1, C2},    {A3, A4 | B1, B2, B3 | C1, C2}, 

{A3, A4 | B4, B5, B6 | C1, C2},    {A3, A4 | B7, B8, B9 | C1, C2}, 

{A1, A3 | B1, B4, B7 | C1, C2},    {A1, A3 | B2, B5, B8 | C1, C2}, 

{A1, A3 | B3, B6, B9 | C1, C2},    {A2, A4 | B1, B4, B7 | C1, C2}, 

{A2, A4 | B2, B5, B8 | C1, C2},    {A2, A4 | B3, B6, B9 | C1, C2}, 

{A1, A4 | B1, B5, B9 | C1, C2},    {A1, A4 | B2, B6, B7 | C1, C2}, 
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{A1, A4 | B3, B4, B8 | C1, C2},    {A2, A3 | B1, B5, B9 | C1, C2}, 

{A2, A3 | B2, B6, B7 | C1, C2},    {A2, A3 | B3, B4, B8 | C1, C2}, 

Below we show an example of a single block from a sample layout (after 

three step randomization). 

A2 A1 

B2 B1 B3 B1 B3 B2 

C2 C1 C1 C2 C2 C1 C2 C1 C2 C1 C1 C2 

Fig. 1. Random assignment of the levels of three factors in one block of the SSP design. 

Note that using the proposed construction method, the resulting SSP design 

has b = 18 blocks with size equal to 12 (two whole plots, three subplots and two 

sub-subplots). So, the parameters of the final incomplete SSP design are equal to   

72v ,   18b ,   12k ,   7231r  ,  n = 216.  

If we had used  in the construction procedure we would have obtained b = 

r2a1a2 = 54 blocks with n = 648 experimental units. Generally, the number of 

blocks of the design obtained by usual Kronecker product is t times larger than 

those of the design obtained by the semi-Kronecker product. 

Then notice that Table 2 indicates the stratum efficiency factors of the 

incomplete SSP design and the numbers of the orthogonal contrasts which are 

estimable in suitable for them strata (see Table 1). The orthogonal contrasts can 

be built using, for example, the method presented in the paper of Ambroży-

Deręgowska and Mejza (2015). 

It is worth noticing that in the presented incomplete SSP design two contrasts 

among B treatments and six interaction contrasts of type AB are estimated with 

full efficiency (equal to 1) in the inter-subplot stratum (III). It results from the 

utilized construction method. 

The remaining contrasts of types B and AB are estimated with not full 

efficiency in two strata: I – the inter-block stratum or II – the inter-whole plot 

stratum and in the inter-subplot stratum (III). Also information about the contrasts 

among A treatments is included in two strata (about 33% in the inter-block stratum 

and 67% in the inter-whole plot stratum). The remaining contrasts among C 

treatments and all interaction contrasts related to this factor are estimated with full 

efficiency in appropriate for them strata as in a complete SSP design. 
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Table 2.  Stratum efficiency factors of the example SSP design 

Type of 

contrast 
df 

Strata 

I II III IV 

A 3 1/3 2/3   

B 2   1  

 6 1/3  2/3  

C 1    1 

AB 6 1/3  2/3  

 12  1/3 2/3  

 6   1  

AC 3    1 

BC 8    1 

ABC 24    1 

All notations in Table 2 are the same as in Table 1. 

As we mentioned earlier, in the cases of the contrasts that are estimated with 

different efficiencies in two strata of the experiment, one can try to recover the 

inter-block stratum information using one of the information recovery methods. 

Methods dealing with this problem are known in the literature (see, e.g. Caliński 

and Kageyama, 2000).  

Note, however, that most, nearly 67% of information about certain contrasts 

of type A, B and AB occurs in the II and III strata. It seems it is sufficient to carry 

out particular analyses related to those contrasts. Each of them gives the best  

linear unbiased estimator in the relevant strata.  

In addition, note that all A, B and AB type contrasts are estimated with full 

or not full efficiency in the inter-whole plot stratum (II) or the inter-subplot 

stratum (III), respectively. In such case one can test the general hypotheses related 

to these sources of variation in these strata.  
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