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Summary 

We try to assess, what truly can be obtained when using only the spirometric measurements 

for the diagnosis of pulmonary disorders. Using spirometric data recorded for 202 patients and the 

Random Forests methodology, we obtained an algorithm permitting for a 100% correct 

classification of the learning sample, and for a 94% correct classification of the 125 'not-healthy' 

patients included into the validation sample.  

We propose, as a routine continuation, to verify the results - especially those for misclassified 

patients - by an independent multivariate graphical procedure called by us the parallel fences plot. 

By inspecting the patient's data vectors displayed in parallel fences plots it becomes evident if they 

are typical or not-typical for the 'healthy' or 'not-healthy' state of the patient. 

The conclusion is, that the spirogram can be used for a relatively safe diagnosis of majority of 

patients. Only those that do not pass the parallel fences plot test should undergo further pulmonary 

scrutinizing test. 
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1. Introduction 

We are concerned with medical diagnosis of possible pulmonary disorders. 

Spirometry tests are a basic tool commonly used to assess lung function. Their 

interpretation is usually done in clinical practice by means of arbitrarily chosen 

parameters and arbitrarily set criteria, like those described in guidelines by Boros 

et al., 2006. This laborious paper in 23 pages including 56 references, considers 

lung impairment diagnosis using confidence intervals derived as percentiles of a 

normal distribution.  

Generally, it is believed, that diagnosis made on spirometric measurement 

alone is unsure. It is not known, what is the percentage of correct (erroneous) 

diagnoses obtained that way. 

This article presents a set of statistical methods that may allow objective 

differentiation between the in-norm and impaired lung ventilation. It shows also 

how obtain a rigoristic estimate on the percentage of erroneous diagnoses 

performed on the basis of spirometric measurements. 

Our considerations are based on a sample data matrix 𝑿𝑛×𝑑, containing n d-

variate data vectors denoting values of d spirometric variables recorded in n adult 

patients. Each patient has its medical diagnosis memorized in a vector 𝒚𝑛×1,  

taking only values 'yes' (the patients is in norm), and 'no' (the patients is beyond 

the norm. Our goal is to construct a prediction algorithm permitting to perform a 

machine diagnosis of the given patient.  

The prediction formula may be based on many methods. Bartkowiak and 

Liebhart (2018)  have made preliminary evaluations considering the following 

methods: Binary decision trees, Random Forests, Neural Networks, Logistic 

Regression, Linear Discriminant function, Quadratic Discriminant function. The 

results were not dramatically different.  

Here we concentrate on one algorithm: the Random Forest (RF). 

This algorithm exploits the principles of ensemble learning (Li, Wu & Ngom, 

2018), is conceptually simple, does not need any probabilistic assumptions, is 

largely robust against outliers, uses simple calculations that prevent from over-

fitting or ill-conditioning. 

2. Analyzed data 

The data were gathered in the Department and Clinic of Internal Medicine 

and Allergology, Wroclaw Medical University. The analyzed here data matrix X 
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is of size 𝑛 × 𝑑 = 202 × 12  , with rows corresponding to patients, and columns 

to variables (attributes) characterizing the patients. 

The variables, their shorts and their meanings are given in the list below.  

Variables no.s 3-12 were computed by the spirometric device on the base of 

the flow curve(s) of exhalation. Variable X4, named here VC., is known also as 

VC% or percentage of VCpredicted ,was computed from an equation predicting the 

VC of a given patient as function of age, height, sex and potentially some other 

parameters, see guidelines in (Boros et al., 2006). The value of 𝑋5 = 𝑉𝐶. for a 

given patient is defined as the percentage of the observed VC. in relation to the 

VCpredicted for that patient. 

X1; Age: Age;  

X2; Height: Height;  

X3; VC.: Vital Capacity;  

X4; VC.: VC%, observed VC. as percentage of predicted VC.;  

X5; FEV 1: FEV1, Forced Expiratory Volume in one second;  

X6; Tiff: Ratio FEV1/VC. x 100;  

X7; FEF: FEF0:21:2, Forced Expiratory Flow at level 0.21.2 dm3;  

X8; MMFR: MMFR, Maximal Midexpiratory Flow Rate;  

X9; MMFT: Maximal Midexpiratory Flow Time;  

X10; FR.FT: Ratio MMFR/MMFT, calculated as X8/X9;  

X11; FEV.VC: Ratio FEF0:21:2/VC. calculated as 1000×X7/X3;  

X12; VC.FT: Ratio VC./MMFT. 

The twelve variables indicated above will be hereafter called 'spirometric 

variables'. Ten of them are strictly spirometric. The first two (Age and Height) 

were added, because the essential parameters: X3 = VC., volume of breathed in 

air, and X4 = VC%, percentage of predicted volume, are considered as depending 

from both age and height of the patient.  

The variables were recorded for n = 202 adult patients, among them 28 

pulmonary 'innorm', and 174 pulmonary 'not in norm'. The 12 variables are 

differentiated to their magnitudes. Before further elaboration presented in this 

paper, each of the variables was standardized in two ways: 

 statistically (S), that is to have mean = 0 and variance equal = 1, 

 to range [0,1] (Ran), that is to have values belonging to the interval 

[0,1]. 
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The boxplots of the subsequent variables are shown in Fig. 1. 

  

Fig. 1. Boxplots of 12 variables constituting the spirometric data set. Left: for data standardized 

(S), that is to have mean =0 and variance = 1. Right: for data standardized (Ran), that is to be 

contained in the range [0,1]. Tukey's fences are marked for each variable in both plots by short 

horizontal bars. Data values outside the fences are deemed to be outliers. 

Looking at the graphs in Fig. 1 one may state that the asymmetry of the 

standardized variables is not so dramatic. For sure, the distributions are not 

normal (Gaussian). Some of the distributions are heavy-tailed (platykurtic). And 

some of them contain not so few outliers. Thus, the usual statistical assumption 

on multivariate normality is not met here. This was confirmed by applying the 

classical Shapiro-Wilk test. It appeared, that only 3 variables had the P-value 

slightly above 0.05; these were: X2; X3; X4 with their P-s equal 0.058, 0.09, 0.058 

appropriately. The remaining P-s were extremely small indicating for a high 

deviation from normality. 

The recorded data were subdivided into two parts: the training and the 

validation sets. Unfortunately, we had only 28 'healthy' patients. We assigned 

them all to the training sample, to get  firm and stable prediction.  

It was accepted that 

 The train sample contains 77 (=49+28) patients: 49 'no' patients with 

impaired lung ventilation (28 with obturation and 21 with 

restriction), and 28 'yes' patients, that is, with their lung function in 

norm. 

 The validation sample contains 125 (=28+97) 'no' patients: 28 of 

them with pulmonary disorders of mixed type, and the remaining 97 

ones with obturative disorders. 

Each patient is represented by a data vector x containing values of the 12 

considered variables.  
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The obtained train and validation data are illustrated in Fig. 2 by a parallel 

fences plot. Both plots contain thick green line segments meaning fences derived 

from the training data set for the 'yes' patients. We did not need to create any 

test sample, because the RF algorithm creates so called OOB (Out-Of Bag) 

data set which serves as test set (see Section 'Methods'). 

  

Fig. 2. Parallel Fences plots with fences derived from the 'yes' data set, that is from the 'in-norm' 

data vectors; appears both in the left and in the right graph. Left: The training data: the 'yes' data 

vectors n1=28 (yellow), and the n2=49 'no' data vectors (black line segments). Right: The n3=125 

'no' data vectors from the validation data (in black). 

The upper and lower fences were obtained for each variable j; j = 1,…,12 as 

(Tukey 1977) 

𝑓𝑢𝑝 = 𝑞3 + 𝑚𝑖𝑛 (𝑚𝑎𝑥 𝑗, 1.5 × (𝑞3 − 𝑞1)), 

𝑓𝑑𝑤 = 𝑞1 − 𝑚𝑎𝑥 (𝑚𝑖𝑛 𝑗, 1.5 × (𝑞3 − 𝑞1)), 

where max j and min j are the max and min of the j-th variable, and q3 and q1 are 

its 3rd and 1st quartiles; fup and fdw denote the upwards and downwards fences 

respectively.  

Both the left and right graphs in Fig. 2 are displaying, apart from the green 

fences, also additional data vectors: The left graph shows data vectors of the 28 

'yes' patients as yellow horizontal line segments, and 47 'no' patents from the train 
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data set - as line segments in black. The right graph shows in black 125 'no' data 

vectors from the validation data set, put in the framework the same green fences 

as the left graph. 

Looking at the left graph one sees that the black lines are partially mixed with 

the yellow lines. Both in the left and right graphs one may see that a considerable 

amount of the black line segments are invading the area delimited, by the upper 

and lower fences of the 'yes' patients. This means difficulties with assigning the 

category 'yes' or 'no' (meaning 'healthy' or 'not-healthy') for some data vectors 

looking similar. It is hard to believe that from these data it is possible to build an 

algorithm which yields about 90% and 94% correct classifications for the train 

and validation data shown in Fig. 2 above. 

3. Methods 

We have data points that belong to two classes, labeled 'yes' (class 1, healthy) 

and 'no' (class 2, not-healthy). Our main goal is to subdivide the entire set of data 

points into two more homogeneous subgroups that are relatively pure, that is, they 

contain a larger proportion of one class of the points each. This is measured by 

the Gini criterion, defined for each subgroup as:  

𝐺 = 𝑝(1 − 𝑝), 

with p denoting the fraction of the majority class points in the subgroup. If this 

subgroup is composed only of points belonging to one category, then the Gini 

index G is equal to 0. 

Alternatively, the quality of the division into two subgroups may be measured 

by accuracy, misclassification error, confusion matrix, deviance, cross-entropy, 

and other criteria (see, e.g., Kuhn & Johnson, 2013; James et al., 2014). 

The basic method used in our elaboration is the Random Forest (RF) method. 

However, because the RF method uses essentially the Binary Decision Tree 

(BDT) methodology, we introduce the BDT firstly. Next we show, how from 

single trees the Random Forest is constructed and emphasize its specific 

properties. 

Binary Decision Tree (BDT) algorithm 

The detailed description of the method may be found in (James et al.,2014; 

Kuhn &Johnson, 2013). The data vectors representing the patients are considered 

as data points located in the d-dimensional data space. 
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The BDT algorithm splits the current data space hierarchically, into 

subsequent nonoverlapping regions, possibly pure in the meaning of the accepted 

criterion, for example, of the Gini criterion. The resulting regions are becoming 

with each split more and more pure. 

In each iteration we find that variable, which provides the 'best' subdivision 

according to the accepted criterion; the found variable (no. J) is next used for 

subdividing the current data space into two mutually exclusive regions 

(subspaces), using the inequalities: 

 𝑋𝐽 < 𝑥0(𝐽),     or  𝑋𝐽 ≥ 𝑥0(𝐽)  

where 𝑥0(𝐽) is a point located on the XJ axis. 

The process is iterated so long, till the created regions are pure, or till they 

contain less than a declared number minSize of data points of mixed category 

(usual minSize=10 ).  

The entire iterative procedure is usually illustrated by a graph called tree. In 

such a graph the splitting points are represented as nodes, and the created regions 

by branches. See section 'Results' and figure 3 for a tree obtained from our training 

data, and for seeing how a tree may be used for classification of a (new) data 

vector x. 

The Random Forest (RF) algorithm 

The random Forest method ( Breiman 2001; Breiman & Cutler, 2003) relies 

heavily on decision trees: instead using only one tree, it uses the methodology of 

ensemble learning (Li, Wu, Ngom, 2018) and constructs a large random forest of 

them. The trees are obtained from B independent bootstrap samples derived 

directly from the training data set and are grown deep, without any cross-

validation or pruning. The algorithm for constructing the subsequent trees is very 

fast, therefore we may use a large number of the trees (we have used the default 

B = 500).  

To obtain the classification of a data vector x from the test sample, we put 

the vector x down each tree. The label of the final branch (leaf) attained by the 

given x is indicated as the predicted category ('yes' or 'no') for that x. In such a 

way each x obtains one vote from each tree constituting the forest. The final 

prediction for the given x is that category, which was indicated most frequently 

(principle: majority voting).  

Such algorithm is known as bagging (bootstrap aggregating). It has been 

demonstrated to give impressive improvements in accuracy just by combining 

together hundreds or even thousands of trees into a single procedure, see (James 

et. al, 2014), p.317.  
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Breiman (2001) has modified the above procedure, making it more efficient. 

Namely, when building the trees, at each split a smaller number of variables (so 

called mtry<d) are used. In our data with d=12 we tried mtry=3, 4, and 5. The 

number mtry is at each node established as a random sub-sample of the integers 

1, 2, . . . , d -  to give to all variables the chance to appear as classifiers. This 

reduces the expected classification error even more - see Fig. 8.8 in (James et al., 

2014). 

Breiman (2001a) and Breiman & Cutler (2003) have also introduced the 

concept of out of bag (OOB) sample, which permits to obtain a better estimate of 

the classification error. The OOB sample is composed from small portions of data 

vectors that did not appear in subsequent bootstrap samples serving for 

construction of the forest. These left out data vectors constitute an independent 

sample and may be used for estimating an independent estimate of the 

classification error. 

The OOB sample may serve also for assessing the importance of variables in 

the performed classification task. This is a tricky approach that works as follows: 

To assess the importance of the j-th variable (j = 1, . . . , d), we permute randomly 

in the OOB sample the j-th column. Next we put the modified OOB sample 

through the trees of the random Forest. In each node, where the j-th variable has 

appeared, we record its effect on the decrease in accuracy of classification or the 

increase of the Gini index. This is compared with analogous results obtained with 

the normal results, that is obtained without the introduced permutation. The 

difference serves as an index of importance of the j-th variable in the classification 

task. 

4. Results of calculations 

All the calculations were obtained using free software developed in R see: 

(The R Project for Statistical Computing, 2018). In particular, the BDT results 

and the RF results were obtained using the R-packages 'tree' and 'randomForest' 

appropriately. Many indications how to use this software are included in the books 

(James et al. 2014; Kuhn & Johnson, 2013). 

Results by Binary Decision Tree 

We show here only one tree obtained from the training data set counting n=77 

data vectors and called in our computations lie3df. The tree was obtained by 

spitting the entire space into subsequent non-overlapping regions defined by the 

following inequalities: 
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Table 1. Variables and their values providing splitting inequalities 

split level inequality 𝑋𝐽 < 𝑥0(𝐽)        inequality  𝑋𝐽 ≥ 𝑥0(𝐽) 

1st split 

2nd split 

3rd split, left branch 

3rd split, right branch 

FR.FT < -0.466854      or    FR.FT ≥ -0.466854 

VC. < 0.316815           or        VC. ≥ 0.316815    

Age < -0.274773          or       Age ≥ -0.274773 

Tiff < 0.349538            or       Tiff ≥ 0.349538  

The tree, obtained as the result of subsequent splits, is shown in Fig. 3. The 

consecutive splitting points 𝑥0(𝐽) constitute nodes of the tree. Each branch, 

originating in a node, is represented by two perpendicular line segments: the first 

segment is horizontal, and the second is vertical downwards. The inscriptions 

37+0 over the left branch and 40=10+30 over the right branch indicate the number 

and categories of data points contained in the regions obtained by the split in the 

given node. 37+0 means 37 'no's and 0 'yes'-s; and 40=10+30 means a total of 40 

data points of mixed category: 10 of them 'no's and 30 'yes'-es. 

 

Fig. 3. Binary tree constructed from n1=77 data vectors constituting the train data set; 'lie3df' in 

the title indicates data file serving for calculations. Stars in final nodes (leafs) indicate number of 

misclassified data vectors 

The tree grows down, till the created regions become final, that is indivisible. 

The final branches are labeled by the category of majority of data points 

associated with them (via the corresponding regions). In particular, in the first 

split using variable J labelled FR.FT and splitting point 𝑥0(𝐽) = 0.466854, resulted 

in two (sub) regions; the first of them (associated with the left branch of the tree) 

contained 37 data points of the category 'no' and 0 points of the category 'ones', 

and the other one (associated with the right branch of the tree) contained 10 data 

points of the category 'no' and 30 points of the category 'yes'. 
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Looking at this graph, one is surprised to see, that only four variables were 

used for providing the subsequent splits of the data space and obtain only 3 

misclassified data vectors.  

The root of the tree starts at the top and the tree grows downwards. The first 

split provided by the variable FR.FT, has subdivided the entire space into two 

subspaces (regions), containing 37 and 40 data points appropriately. They are 

indicated as the left and right branch of the tree. It happened, that the left one was 

already a final one, because the respective subspace contained only data points 

labeled 'no', and as such it was a pure one. The subspace, designated by the right 

branch of the first split, was mixed (10 'no's and 30 'yes'es), and as such was 

eligible for further splitting.  

The next splits indicated by the splitting inequalities in Table 1 proceeded in 

a similar way.  

The final branches are called also called 'leafs'. In Fig. 3 we have five such 

leafs. They are labelled by the majority category of data points in their regions. 

Additionally, below each leaf there is information on the category of points 

contained in the respective regions. Stars indicate number of misclassified points 

from the data set lie3df obtained when using the ad hoc constructed tree 

algorithm. 

Results by Random Forests 

The random forest was constructed from 500 trees evaluated on 500 bootstrap 

samples drawn from the train data set. 

Classification and error rates. 

When putting down through the 500 trees a data vector x, one obtains 500 

votes for the category of that x. The predicted category is established by the 

principle maximum number of votes; each of the B=500 trees has given one vote. 

The predictions for the train data, the OOB test data, and the validation data are 

shown in Tab. 2. 

It may be seen, that - both when using 12 and 6 TOP SIX variables- the train 

data set was classified perfectly in 100%. This happens often in supervised 

learning and means simply that the algorithm has learned perfectly what it was 

told to learn. More important are the results obtained from new data, like the test 

or validation data sets, that were not used for learning. As was said already, in 

RFs the role of a test set is played by the OOB sample, constructed during 

learning. Thus, the results from the OOB test sample, shown in Tab. 1, are more 

interesting: here we observe the overall error rate of 10.39 % for the 12-variables 

data and the overall error rate of 11.69 % for the 6-variables data. Practically there 
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are jointly 8 and 7 misclassified data vectors in the 12-variables and 6 variables 

data set. The difference between the error rates in the full and reduced data set is 

due to one wrongly classified patient in the reduced data set. 

Table 2. Confusion matrices from Random Forests when applied to the train, OOB train, and 

validation data and using all 12 or TOP SIX variables 

train set n=77 OOB test set n=77 validation set n=125 

USING 12 VARIABLES 

 No Yes ErrRate  No Yes ErrRate  No Yes ErrRate 

No 49 0 0.0 No 45 4 8.16% No 118 7 5.6% 

Yes 0 28 0.0 Yes 4 24 14.29% Yes – – – 

overall   0.0 overall   10.39% overall    

USING TOP SIX VARIABLES 

 No Yes ErrRate  No Yes ErrRate  No Yes ErrRate 

No 49 0 0.0 No 46 3 6.1% No 117 8 6.4% 

Yes 0 28 0.0 Yes 6 22 21.4% Yes – – – 

overall   0.0 overall   11.69% overall   – 

Reduced number of variables 

The RFs has provided also a list of ordered importance of variables, evaluated 

on the basis of the OOB sample using as criterion the mean decrease in Accuracy 

of classification and the mean increase of the Gini index. The 6 top ranked 

variables (TOP SIX) appeared to be: X4, X10, X12, X6, X8, X5, that is the 

variables labelled as VC., FR.FT, VC.MMFT, Tiff, MMFr, FEV1. However, for 

simplicity avoiding possible confusion, in the following these TOP SIX variables 

will be considered in that order as they appear in the list presented in Section 2, 

that is as shown in the table below: 

Table 3. Six highly ranked variables 

no. of variable X4 X5 X6 X8 X10 X12 

labeled as VC. FEV1 Tiff MMFR FR.FT VC.MMFT 

The classification error rates for the reduced 6-variables data are shown in 

Tab. 2. It is seen that the basic RF with 500 trees yielded a 100% of correct 

classifications for the n=77 train data, and 117 correct classification in the n3=125 

validation data, which means a 93.6% of correct classifications. However, the 

OOB test set yielded 9 misclassifications. 

Figure 4 shows misclassified data vectors (from the reduced 6-variables data) 

in the framework of parallel fences.  
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Fig. 4. Parallel fences plots illustrating misclassified data vectors. 

Figure 4 is composed from 4 charts illustrating Tukey’s fences and 

misclassified data vectors from the validation set. In particular: 

 (a) top row, left chart shows two pairs of fences (upper and lower) derived 

from the train data. The thick green dotted line segments denote fences for 

the 'yes' patients, while thick black dashed line segments denote fences for 

'no' patients from the same set. The green fences are a subset of the green 

fences shown in fig. 2. 

 (b) top row, right chart shows the parallel fences plot containing the 8 not-

recognised 'no's from the validation set in the framework of the same fences 

as in (a). The line segments of the questioned 'no's are in navy color. 

Looking at the chart, it is seen, that 7 out of the 8 misclassified 'no's are 

located in the overlapping area designated both by the green and black 

fences. Only one item has 4 values of its variables located outside the black 

fences Thus this is the case of indistinguishability between the two 

categories clearly seen already in Fig. 2, right graph. It is surprising, that 
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only 8 items were misclassified in the case of such big overlap, as shown 

in Fig. 2. 

 (c) bottom row, left chart shows the 3 not recognized 'yes'-es from the OOB 

test data set - in the framework of of the same fences as in (a). Here the 3 

not-recognized 'yes'es from the OOB test set are shown in dark orange (a 

reminiscence of yellow). All 3 of them are located partially in the 

overlapping area of the green and black fences. 

 (d) bottom row, right chart shows the 6 not recognized 'no's from the OOB 

test data set - in the framework of the same fences as in (a). The respective 

line segments are in navy (as in chart (b)), and the situation is as in (b) and 

(c): the misclassified 'no's belong partially both to area delimited by the 

green and the black fences. 

When applied to the internal OOB test data, the RF's made the proper 

diagnosis for 93.9% of the 'no's (46 out of 49) and 78.6% of the 'yes's (22 out of 

28). The 3 not-recognized 'no's and the 6 not-recognized 'yes'es are shown in  

Fig. 4, bottom row. Again, looking at these plots, one is not surprised that the RFs 

could not correctly recognize the category label of these data vectors. 

5. Summary and final conclusions 

We have considered 202 data vectors containing values of 12 spirometric 

variables. Each data vector represents spirometric measurements for one patient. 

Our aim was to detect if the patient's pulmonary ventilation system is in 'in norm'. 

We found that the Random Forest is able to make the proper diagnosis in 

92% of the 'no' and 86% of the 'yes' patients. These are results from an internal 

RF test set built from the OOB data vectors. In a validation sample of 125 new 

patients in the 'no' category, 118 patients were properly recognized as 'no', which 

means an accuracy 94.4%. 

The RF algorithm provided also the ranking of the used 12 variables with 

respect of their importance in the constructed diagnosis. Using this result, we 

repeated the analysis using only the top-ranked 6 variables. The Random Forests, 

when applied to the internal OOB test data, made the proper diagnosis in 93.9% 

of the 'no' and 78.6% of the 'yes' patients. In the validation sample of 125 new 

patients in the 'no' category, 117 patients were properly recognized as 'no's, which 

means an accuracy 93.6%. 

Using combined parallel coordinates and parallel fences plots we have shown 

that fences delimiting the plausible area of the 'yes' and 'no' data vectors have a 
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remarkable overlap. In such a situation the proper diagnosis is impossible for 

some data vectors. We have shown that the misclassified vectors are located at 

least partially in such overlapping areas.  

The constructed plots show clearly, that the model training data for the 'yes' 

and 'no' categories are overlapping, thus for some part of the data it is not possible 

to make the right diagnosis.  

The final conclusions are: In the present state of art, and using the 

methodology of RFs and parallel fences plots, we are able to get a high percentage 

(higher than 80%) of the right diagnoses, and we are able to sort out the patients 

that got the right diagnosis. Only for the remaining, say 20 percentage of patients, 

it is necessary to undergo further examinations. 
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