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Summary 

The influence of forest environment (forest regeneration after a 1992 forest fire covered with 
young stands (low quality deer habitat) and unburned forest of diversified stand age classes (high 
quality deer habitat)) and climatic factors (the mean temperature and the total number of days with 
snow cover in January and February) on roe deer antler asymmetry in two age classes of roe deer 
males was studied. Data were collected by local hunters from 366 shot males during 1998–2007. 
We applied 4 generalized linear models: Poisson model, Poisson adjusted for overdispersion, 
negative binomial and negative binomial with log canonical link function. Goodness–of–fit 
statistics were checked as well as residuals plots. There was a significant difference in roe deer 
antler asymmetry incidence between age classes for both considered habitats while weather 
conditions didn’t influence roe deer antler asymmetry. 
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1. Introduction 

Roe deer male quality can depend on an antler symmetry. By males with 
symmetric antlers we mean those with an even number of points on both antlers, 
otherwise they are asymmetric. Degree of antler symmetry can be an indicator 
of an environmental stress (e.g. malnutrition). Thus it is interesting to check the 
influence of forest environment quality on roe deer antler symmetry. Roe deer 
are the only cervid which antlers grow in winter, when the food conditions are 
the toughest among all the seasons. Furthermore it is also interesting if the snow 
cover and temperature influence antler growth (in this case its level of 
asymmetry). 

The number of males are a typical count data therefore linear models are 
not suitable for them. Since 1972 when Nelder and Weddenburn (1972) used the 
term of generalized linear models (GzLM) and adapted linear model 
methodology for use with non–normal data – these models are typically applied 
for non–normal data. The main features of GzLM are the link function and the 
variance function (McCullagh and Nelder, 1989; Littel et al., 2002). The link 
function η is a mathematical model of the expected value µ of a random 
response variable Y. With normally distributed data we fit a linear model 
directly to the mean, but in GzLM we fit the linear model indirectly using a 
function of the mean – the link function. The variance function V(µ) describes 
the relationships between the expected value and the variance of the distribution 
of the response variable.  

The log likelihood formula for exponential family distributions is 
considered as the function of θ, φ and y being given (McCullagh & Nelder): 

 
( ) ( ) ( )θ

φ
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where θ is the natural parameter, φ is a scale parameter and ( )⋅b , ( )⋅c  are 
specific functions. The second derivative of (1.1) is called the variance function 
V(µ). Thus var(y)= φ V(µ). 

Typically the Poisson distribution is used to model information on counts in 
situations where there is no natural “denominator” and thus no upper limit of 

size of an observed count. The probability of the count y is ( )
!y

e
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where λ is the mean count. For the Poisson distribution the mean and the 
variance are equal ( ) ( ) λ== yyE var . The log likelihood of the count y is 

( ) ( ) ( )!loglog yyy −−= λλl . According to (1.1) ( )λθ log= , φ=1 and V(µ)=λ 
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(Littel et al., 2002). The link function in the Poisson distribution is η  = log(λ) 
thus η = θ. Link function having the form η = θ is called the canonical link 
function (Littel et al., 2002). 

When the variance is larger or smaller than expected in a given model, it 
indicates overdispersion (φ > 1) or underdispersion (φ < 1) (Cameron & 
Trivedi, 1998; McCullagh & Nelder, 1989). The scale parameter φ is also called 
the dispersion parameter (McCullagh & Nelder, 1989). Overdispersion causes 
that standard errors are underestimated and test statistics are overestimated. For 
biological count data overdispersion occurs quite often (Littel et al., 2002) and 
the distribution where the variance is bigger than the mean could be more 
appropriate than the Poisson distribution. One such distribution could be a 
negative binomial distribution (Dean & Lawless, 1989). 

The aim of this study was firstly, to check which of environmental factors 
and weather conditions influence roe deer’s antler growth and secondly, to find 
out the most adequate generalized linear model describing those data. 

2. Materials and methods 

2.1. Data 

Observations were collected by local hunters from shot roe deer bucks 
during 1998–2007. The total number of males was 366 where 106 bucks were 
with asymmetric antlers. The date and place (burned/unburned forest) of each 
shot buck were noticed. The number of points on each antler from a given male 
was counted and its age was estimated on the basis of tooth wear. We took into 
consideration 2 age classes – yearlings (i.e. 1.5 –years–olds) and three–year–old 
bucks. Roe deer antlers were compared between two contrasting areas: forest 
regeneration after a 1992 forest fire covered with young stands (low quality deer 
habitat) and unburned forest of diversified stand age classes (high quality deer 
habitat). In addition to environmental factors, the influence of climatic variables 
such as the mean temperature and the total number of days with snow cover in 
January and February was examined. 

2.2. Statistical methods 

We were interested in examining the asymmetry incidence i.e. the number 
of bucks with asymmetric antlers y divided by the total number of observed 
bucks in the ij th age–habitat combination in kth year Nijk. Therefore the response 
variable Y was count variable which is usually analyzed using generalized linear 
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models (GzLM). At the beginning we used a Poisson regression model which 
form was: 

 ( ) ( ) stahhamN ijjiijkijkijk 21loglog ββλη ++++++== ,  (2.2.1) 

where ( )ijkijk λη log=  is the canonical log link function and ( )ijkλlog  is the 

mean count for the ij th age–habitat combination in kth year (k=1,…,10), m the 
intercept, ai the i th age effect (i=1, 2), hj the j th habitat effect (j=1, 2), ahij the 
interaction effect for ij th age–habitat combination, t and s are respectively the 
mean temperature and the mean number of days of snow cover variables in 
January and February in considered years. β1 and β2 are regression slopes, which 
have convenient interpretation as the natural log of the antler asymmetry rate 
ratio for comparing a one unit increase of t or s respectively. The logarithm of 
the total number of bucks in each class ( )ijkNlog  is an offset term allowing 

different number of males in considered classes. In matrix notation the model 
(2.2.1) has the form (Littel et al., 2002): 

 Xβη = ,  (2.2.2) 

where ηηηη is the N×1 vector of the link function, X is is the N×p design matrix and 
ββββ is the p×1 vector of the model parameters. 

For model (2.2.1) we checked the evidence of overdispersion using 
goodness–of–fit statistics. The overdispersion parameter φ is unknown and 
therefore must be estimated. A method suggested by McCullagh and Nelder 
(1989) is using the deviance, which is the measure of discrepancy between 
observed and fitted values. The deviance is defined as (Littel et al., 2002):  

 ( )( ) ( )( )[ ]yβXyy ;ˆ;2 θθ ll − ,  (2.2.3) 

where ( )y;θl is the log likelihood with ( )yθ  value determined from the data 

and ( )βX ˆθ  attained from the estimate of ββββ under the fitted model, y is N×1 

vector of observations. The deviance has an approximate χ2 distribution with  
N–p degrees of freedom (N=total number of observation, p= number of the 
model parameters; rank of the design matrix X). The deviance divided by N–p  
is the estimator of the unknown overdispersion parameter φ (McCullagh & 
Nelder, 1989) and it is used to detect over – or under – dispersion in Poisson 
models: 
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pN

deviance

−
=φ̂ . (2.2.4) 

There are at least two ways to account for over – or under – dispersion in 
GzLM. One way is to adjust the covariance matrix of the Poisson model with 
the overdispersion parameter φ. Then the covariance matrix is pre–multiplied by 
φ and the scaled deviance and the log–likelihood ratio tests are divided by φ 
(Stokes et al., 2000). This approach was suggested by McCullagh and Nelder 
(1989). 

Second way to manage overdispersion is to assume a more flexible 
distribution e.g. the negative binomial distribution with the mean λ and the 

variance function 2λλ k+ , where k is the aggregation parameter (Littel et al., 
2002). The limiting distribution for negative binomial is Poisson when k=0. The 
negative binomial distribution adds a quadratic term to the variance representing 
overdispersion. For k>0 the variance is larger than the mean and the data are 
more aggregated (clustered) than would be expected in the Poisson distribution 
(Littel et al., 2002). The canonical link function for the negative binomial 

distribution is 
k
1

log
+

=
λ

λη . When k is unknown it has to be estimated. A 

simpler approach to the negative binomial distribution is using the log(λ) as the 
canonical link. 

We decided to perform the analysis of the experimental data described by 
the model (2.2.1) in four ways. Firstly we used the “classical” Poisson model 
(model 1) assuming that the vector of observations y is a realization of the 
random variable Y having Poisson distribution. Secondly, assuming the same 
distribution of Y as in the model 1, we used adjusted for over – or under – 
dispersion Poisson model (model 2). Next we assumed that response variable Y 
had the negative binomial distribution and we used the negative binomial model 
with the ( )ijkλlog  as link function (model 3) and the negative binomial model 

with the link function of the form 
kijk

ijk
ijk 1

log
+

=
λ

λ
η  for estimated k (model 4). 

To compare negative binomial models (models 3 and 4) with the Poisson 
ones (model 1 and 2) we carried out the likelihood ratio test for significance of 
overdispesion (Cameron & Trivedi, 1998), that is, the test of the hypothesis 

0:0 =kH  against 0:1 >kH . 

To check assessing of the fit of these models we analyzed two kinds of 
residuals plots suggested by McCullagh and Nelder (1989). One of them is the 
plot of standardized deviance residuals  
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( ) ijkijkijkijk
D

ijk hdevianceyrs −−= 1/ˆsigntd λ , 

where hijk is a function of the Hessian matrix, against the predicted counts ijkλ̂ . 

The unequal scatter on this plot indicates violation of the homogeneity of 
variance (Littel et al., 2002). The next is the plot checking the link function. It is 

the plot of linear predictors 
ijk

ijkijk
ijkijk

y
y

λ
λ

η ˆ

ˆ
ˆ* −

+=  against estimated link 

function ijkη̂ . 

We used PROC GENMOD in SAS System for all computations (SAS 
Institute, 2008). Residuals values needed for model checking plots were 
obtained using OBSTAT statement of this procedure. 

3. Results 

The goodness–of–fit statistics for models 1–4 are presented in Table 1. The 
deviance has approximately chi–square distribution with the number of degrees 

of freedom presented in column df. For model 1 ˆ 39.628 33 1.201φ = =  what 
indicates slight overdispersion. The scaled deviance for model 2 is the deviance 

for model 1 divided by the estimated overdispersion parameter ̂φ . For models 3 
and 4 both criteria are the same. The third row of Table 1 consists of chi–square 
statistics, and referred p–values for test fitting of presented models. For none of 
models 1–4 we do not reject the hypothesis that data come from assuming 
distributions. 

Table 1. Criteria for assessing goodness–of–fit for models 1–4 

Model 1 and 2 Model 3 Model 4 
Criterion df Value Value/df Value Value/df Value Value/df 
Deviance 33ª 39.628# 1.201# 43.141  1.307  44.117 1.337 
Scaled 
deviance 

33 33## 1## 43.141  1.307  44.117 1.337 

Pearson χ2 

(p–value) 
33 

35.779 
(0.339) 

1.084 39.455 
(0.204) 

1.196  41.112 
(0.157) 

1.246 

Model 1 Model 2 Model 3 Model 4 Log 
likelihood 

( )θ̂l  

(p–value) 

37.930 31.586 

(<0.001) 
38.047 
(0.314) 

38.075 
(0.296) 

# for model 1; ## for model 2 
ª – df=33 – any 3 year–old buck was shot at burned forest in 1999 thus N=39 (instead of 40), p=6 
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The results of the likelihood ratio test for significance of overdispesion i.e. 
the hypothesis H0: k=0 are presented in the last row of Table 1. We do not reject 
H0 for both negative binomial models and conclude that the Poisson model fits 
well. However, we used this test also to compare both Poisson models i.e. model 
2 with adjustments for overdispersion with model 1. There is a significant 
difference between these models, so model 2 seems to be appropriate. 

We checked residuals plots next. Figure 1 presents standardized deviance 

residuals D
ijkrstd  versus the predicted mean ijkλ̂  for models 3 (Fig. 1b) and 4 

(Fig. 1c) and for model 2 D
ijkrstd  against predicted mean  adjusted to a constant 

information scale ijkλ̂2  (Fig. 1a) as was suggested by McCullagh and Nelder 

(1989). There is no overt visual evidence on unequal scatter or systematic 
pattern on plots in Fig. 1 and the absolute values of standardized deviance 
residuals aren’t greater than 2.5, so none of compared models can be rejected on 
the basis of these plots.  

Figure 2 presents linear predictors y* plotted against the estimated link 
function ijkη̂ . These plots are unique to GzLMs (Littel et al., 2002). They should 

be linear, departure form linearity suggests a poor choice of the link function 
(Littel et al., 2002). There is the visible scatter on each of Fig.2 a–c plots and no 
overt departures from linearity and hence no obvious evidence of a poor choice 
of the link functions for considered models. 
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Fig. 1a. The plot of standardized deviance residuals against adjusted predicted mean (adjusted 
lambda) for model 2 
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Fig. 1b. The plot of standardized deviance residuals against adjusted mean ijkλ̂ for model 3 

 

Fig. 1c. The plot of standardized deviance residuals against predicted mean ijkλ̂ for model 4 
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Fig. 2a. The plot of linear predictors y* against estimated link function ijkη̂  for model 2 
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Fig. 2b. The plot of linear predictors y* against estimated link function ijkη̂  for model 3 
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Fig. 2c. The plot of linear predictors y* against estimated link function ijkη̂  for model 4 

 

None from all models 2–4 was eliminated due to lack of the fit. Therefore 
we wanted to check if there were differences between results of testing the 
effects of the model (2.2.1). Table 2 presents the results of the type 3 analysis 
for all considered models. It contains likelihood ratio chi–square test statistics 
and associated p–values. It’s worth pointing out that LR chi–square values for 
model 1 (the Poisson model without adjustments) are bigger than in model 2 
(the Poisson model with adjustments for overdispersion). It increases because 
the standard errors of the estimated effects are biased and they are too small 
what makes test statistics overestimated. 

Table 2. Likelihood ratio statistics (LR) for type 3 analysis for models 1–4  

Chi–square statistics (p–value) Source of 
variation df  

Model 1 Model 2 Model 3 Model 4 

habitat 1 
3.09  

(0.078#) 
2.58 

 (0.108) 
3.27  

(0.070) 
2.66 

 (0.103) 

age 1 
31.50 

(<0.001) 
26.23 

(<0.001) 
26.58 

(<0.001) 
26.97 

(<0.001) 

habitat*age 
interaction 

1 
4.79  

(0.028) 
3.99  

(0.045) 
5.01  

(0.025) 
5.80  

(0.016) 

temperature 1 0.09 (0.758) 0.08 (0.779) 0.12 (0.731) 0.13 (0.718) 

snow 1 0.24 (0.626) 0.20 (0.657) 0.32 (0.572) 0.37 (0.540) 
# (p–values in brackets) 
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These results for all models are similar. There are significant differences of 
age groups as well as the interaction of experimental factors. There are no 
significant differences between habitats that are burned and unburned forest. 
Considered climatic variables – the temperature and the number of days of snow 
cover in January and February are not significant so the influence of these 
weather conditions on roe deer antler asymmetry was not confirmed. 

We obtained the same results for all considered models but finally we chose 
the Poisson model with adjustments for overdispersion (model 2) as the best 
model for presented data. Our decision was determined mainly by the fact that 
the Poisson distribution is the most common distribution for modelling count 
data and the negative binomial distribution is applied generally in these 
situations where the Poisson model is a poor fit. 

Table 3 presents roe deer antler asymmetry incidence scores and their 
significance for main and interaction effects of the model (2.2.1). There is a 
significant difference in roe deer antler asymmetry incidence between age 
classes for both considered habitats. The incidence of antler asymmetry for 
yearlings was lower than for 3 –years–old ones in high as well as for the low 
quality deer habitat. Younger bucks with asymmetric antlers were more rarely 
observed at the areas of the forest regeneration covered with young stands than 
in unburned forest, while 3 –years–old ones with asymmetric antlers lived in 
both types of habitats at the comparable level.  

 

Table 3. Roe deer antler asymmetry incidence scores for main and interaction effects (ns – not 
significant 

* – p<0.05, ** – p<0.01, *** – p<0.001) 

Age category 

habitat 
yearlings 3–years–old 

bucks 
significance total 

unburned forest 19.4% 44.8% *** 32.6% 

burned forest 6.8% 50.0% *** 20.4% 

significance * ns  ns 

total 14.6% 45.8% *** 29.0% 
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4. Conclusions 

1) Three of four considered generalized linear models: the Poisson 
model adjusted due to slight overdispersion, two negative binomial 
models with different log–link functions and fitted presented count 
data well. 

2) Roe deer antler asymmetry was significantly lower for yearlings than 
for 3–years–old males, while it was observed on similar level in 
unburned and burned forest. The incidence of antler asymmetry for 
younger bucks was lower in burned than in unburned forest, but for 3–
years–old bucks this incidence was similar in both considered 
habitats. 

3) The weather conditions such as average temperature and average 
number of days with snow cover in January and February haven’t 
affected roe deer antler asymmetry. 
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