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Summary

The stochastic differential equation with coloredite noise is used for the description of
the dynamics of some selected biological commumifitne deterministic models of single species
population models are transformed to the stochastidels. The parametric identification of these
models is done by the maximum likelihood methode €ffectiveness of the estimation procedu-
res is proved by Monte Carlo simulations as welttescked on the real data for Whooping Crane
population.
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1. Introduction

Biological systems such as the communities of alsiraad plants react on
the changes of existence conditions, that is toogagnvironment actions and
own states. That is why the description of theeystdynamics, connected with
the selection of a mathematical model and its iattibn, is still open problem.
The solution of this problem is never unique. B@strom and Sumpter (2006)
stated that an effective population dynamics mdel to take into account af-
tereffects and joint effects of different exteraal internal factors as far as the
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exact nature of the noise in a population is néw@wn and can be explained
only as demographic and environmental noises.retessary to notice that the
deterministic models presented by the ordinaryvamethe partial differential
equations do not allow to analyze all kinds of émironmental fluctuations,
especially, if they are significant. To improve thedel, as it was done by Allen
and Allen (2003), it is possible to involve moreiaales or to change a class of
the models. Let us consider several possible wamsitions.

The first mathematical description of the growthaafertain population was
proposed by Malthus (1802). It is a linear diffdi@nequation given as (see
Murray, 2006)

dY, = pY.dt, Y(t,) =Y, (1.1)

whereY, IR is the size of the population (the numbers ofvihlials), 1/ L R
is the coefficient of the natural growth of the plgtion, tD[tO,T],

t, <T <o. The unbounded growth model (1.1) is valid onlyifew cases, as

for example food resource, and describes a potgrassibility of medium for
the certain population as far as in real life gibres the population size is
bounded by environment capacity.

Improvements of Malthus model introduced by Pead Reed (1920) gave
possibilities to describe a sufficiently real grawaw for many populations of
microorganisms, animals and humans by non-linefferential equation (see
Murray, 2006)

dy, = 4, (1—%)&, Y(t)=Y,. 1.2)

where the multiplier(l—%) represents the medium resistivity for the increase

of the populationK # 0 (K U R) is the environment capacity.

To describe the self-intoxication process of oneeigs population by the
waste products of its own metabolism Volterra ()98dded integral delay to
the Verhulst—Pearl model and got the following gnéd—differential equation
(see Murray, 2006)

= |<

dy, =uvt(1— r(t—r)erdt, Y(t,)=Y,, (1.3)

O t—y
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where r([)] is the hereditary function which shows the infloerof the prehis-

tory at the instant on the population dynamics, eower, the integral term in-
troduces a process aftereffect.

It is possible to notice that mentioned models regsted, namely we can
come from the model (1.3) to the model (1.1) dfilaling with the self—
intoxication process. It depends only on the valakshe parameters. These
models are idealistic and do not reflect influenakethe external environment to
the systems. In order to improve these models andke into account random
disturbances, which are not necessary small, wesapgpose that system dy-
namics corresponds to some stochastic process.

Let (Q,F ,P) be a stochastic basis satisfying the usual camditi(see
Jazwinski, 2007). LetY:Q - R be the size of the population, such that
wdQ, Y(w)=y, and{v(t),tD[to,T]} be a continuous stochastic process,
defined on(Q, F ,P) , such that its mean value functiﬁ{v(t)] =0 for every

tD[tO,T] and V(tO) =0 (E[[]] denotes the expectation operator). In addition,
we suppose that this process has the followingeptigs:

(1) its incrementsv(t+h)-v(7+h) are independent and stationary for
everyt >70[t,,T] and everyh>0;

(2) the mean square continuity of(t) for everyt O[t,,T];

(3) the regularity conditions, ie. EDv(to)ﬂ <o and

var[v(t+h)-v(r+h)]<e for everyt>70[t,, T] and everyh>0
(var[[] denotes the variance operator).

Many different processes meet these conditions Jaewinski, 2007). To
stay with this idea it is reasonable to use soroehststic process as far as it
gives possibilities to describe different situatiaf external influences as long—
range or short—-range dependences, aftereffectosemnae of named situations.

We use the colored white noise, which incremengs&(fdt)” (& ~N (0,1)

ii.d., 0<H <1 is an fractal index), as a model of the proce(s@ and rewrite
the model (1.1) as the linear stochastic diffesdmquation (SDE)

dY, = gY, + Y& (dt)", Y (t,) =Y, (1.4)
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and models (1.2) and (1.3) as the non-linear SDE

dY, = (Y, - %2 )dt+oY& (dt)™, Y (t,) =Y, (1.5)

where i, =4 and o are some unknown parameters.

Since (1.1) is called the unlimited growth moded &h.2), (1.3) are limited
growth models, further on we call the model (1.4)tlae stochastic unlimited
growth model and model (1.5) as the stochastiadiengrowth model. The aim
of this paper is to show the method for the paramseg¢stimation of the SDEs
(1.4) and (1.5).

2. Parameter identification method

2.1. Problem formulation

The continuous stochastic procesé’es{Yt,t D[to,T]} are assumed to be

the unique strong solution of the SDEs (1.4) an8)(iwhich in general form
can be written as follows

dY, = f (Y,0)dt+g(Y,,0)&(dt)", Y(t,) =Y. 2.1)
where f(Y,,0):RxR" - R and g(Y,,0):RxR" ~ R are some function,
0 is a vector ofn unknown parameters.

We suppose that for the proce¥s there are real valued observations
X XXy OR  made at the equidistant discretization —times

t, <t <...<ty, =T . We also remark that the stochastic differencexeou
Xio = X, + £(X,,0)0+g(X,,0) &A™, (2.2)

(where A=t,, —t, for k=0,1,...N and X, =Y,) is an discrete analog of the
SDE (2.1) with accuracy

g(8) =E(Y, - x2))<ca’?, 2.3)
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where positive constarff does not depend ofA. The observations contain the
information about the parameters vectdrl © J R (where ® specifies the set
of allowable values for the parameters) that wenviisestimate. Since the col-
ored white noise, used in the model (2.1), is Markoocess (see Jazwinski,
2007), the maximum likelihood estimation of the graeters® is one of the
possible solutions to the problem. This requiles ¢onstruction of the likeli-
hood functionL (@) which is based on the probability density functipaif)

known for each transition (see Filatova and Grzyeacski, 2007b or Hurn et
al. 2003).
Jumarie (2007) showed that first and second monwdritse increments of

the process X,, k=0,1..N, are E{AX|X,k}=f(X,.,0)A and
E{(AX)2 | X ,k} =g?(X,.0)A%" . The pdf of(X,,.,t,,,) for a process (2.2)

starting at( X,.t, ) is

1 X, - X - f(X.,0)a)
pdf(xwtkﬂlxwtk;e):Jzngz(x 0)A" exp{_( k1292(kx e()AkZH) ) (24)
k? k?

The joint density corresponds to the likelihooddiion

N-1

L (9) = pdf (XO’tO’e) l—! pdf (Xk+1ltk+]J Xk ltk 10) . (25)
Finally, the parameters estimation task for the $RI) consists in

L(é) =supL (0), (2.6)

0o

where 0 is the estimate 08, sup(J is the least upper bound df (8) over
all 000o.

2.2. Stochastic unlimited growth model

For the equation (1.4) functions are(X,,0) = #X, and g(X,,0)=0X,,

where® =[ /4, ,B]T . So, the maximum likelihood function is
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X = Xy _/JxkA)z}

N-1 1 ( .
L =[——exp|-
W] Bria p{ T

For the simplification we replace product functimnsums

18X, — X, XA 101
—|OgL(,UJ)=§k0( "10 XZA/;'I* Zlogx2 o
g
N
E(Iog +log 27732”))

This simplification means that the task (2.6) fwabée rewritten as follows
L (9) =inf {~logL (6)), (2.8)

whereinf ([J is the greatest lower bound df () over all 0 ©.

The optimal solution of (2.8) can be determinegaftial derivatives of
(2.7) are zero, namely

_alogL(,u,a) Ni,ux DX =X _g
a/j 2A2H o xk !
alogL(,ua _ sz[xk+1 x2 zH/JX A] N_,
00 XA 4
Finally, we got following estimates of the paramet® = (4, ﬁ]T
1 %Xkﬂ (29)

TNAE

H X ™ X ,UX A]

(2.10)

AZH z
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2.3. Stochastic limited growth model

For the model (1.5) parameters functions &fgX,,0) = uX, - SX? and

g(Xk,B) =oX,, where@ =[,u,,8,U]T. Using the same arguments as in the
previous case, we can write the negative log—tikeld function as

N2 X = X = (X, = BXZ) A
|Og|-(/J,30')=§ko( = 0.(X2A2H k) ) *t5 kZE;IOQXZ 2.11)
%(Iog +Iog 27132“))

which allows to find partial derivatives

_dlogL (u1,8.,0) _ A f( X, — X

= M (u-BX A, (2.12
a/,[ 0_2A2H s Xk (/’1 ﬁ k) j ( )

AogL(nf0) . B Sy px)a). e

6,3 O.ZAZH e
_dloglL (u.B.0) __ 1 E[Xm (= BX )X A] (2 14)
oo 40° = XA "

Setting partial derivatives (2.12) — (2.14) equatéro allows to find the optimal
A A T
solution of (2.7), namely the following estimatés [,[1, B, ﬁ]

N-1 N-1 —
ii= 1{ k+Zl xm Xy } (2.15)

~ ,UZk_olx %lej:_é(xkﬂ_xk)
ThoX?

(2.16)
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and

N 1 N_l|:xk+1_xk_([lxk_ﬁxk2)A:|2
52 = I Z sz ) (2.17)

k=0

Remark 2.1. Since in both cases the estimaesontain §° instead ofd
and are found on the basis of (2.2), to deterntieesing of the estimate of the
parameterg the optimization of (2.7) has to be done understams (2.3).
Moreover, the systems (2.9) — (2.10) and (2.152.27) require the iterative
solution, which can be done by an appropriate nigalealgorithm such as the

L7z, method (see Sobol, 1979).
Remark 2.2. For the models (1.4) and (1.5) the maximum Iheatid esti-

mation theory allows us to derive asymptotic prtipsrof ﬁ i.e. the estimates
are a.s. consistent and asymptotically normal {fier details see Xiao et al.
2011).

3. Simulation experiments

To illustrate the efficiency of the estimates (2:9X2.10) and (2.15) —
(2.17), we completed some numerical experimentsgusionte Carlo simula-
tions. The simulation procedure was as follows:

1) set step intervah =107, tD[O,S] , C=1.0, starting values of the parame-
ters 8°=[0.0,0.4" in (1.4) and®* =[0.0,0.0,0.§" in (1.5), the initial
value Y, = X, =1,

2) generate sample path of the standard Browniagiomfor selected) ;

3) use this sample path for each valtld]{O.l,O.S,O.}B to generate normal-

ized colored white noise by means of the fast feouransform (see Paxson,
1997);

4) setting the true value of the parameters, narﬂ@t;[Z.O,O.qT in the model

(1.4) and 0 :[2.0,0.01,0.2]5T in the model (1.5) use (2.2) to obtain syn-
thetic dataY for each sample path of colored white noise;
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5) for models (1.4) and (1.5) find the estimaéa,sgenerating sample paths of
colored white noise as in steps 2) — 3) and gettidg by (2.2) for

AD{lO‘l,l(Zf2 ,103} and repeating this stepl ™" {10,100 times.

The averaged estimates as well as their standardtidms are listed in Table 1
and Table 2.

Table 1. Monte Carlo experiments for the model (1.4)

A H N EXTH G+,
0.1 17668t 0.116 | 0.3366+ 0.038
10™ 0.5 1.7400+ 0.168' | 0.4080+ 0.020
0.8 1.777H 0.065 | 0.3263+ 0.041
0.1 1.8173+ 0.082, | 0.4524+ 0.024
107 0.5 10 | 1.9097+ 0.322 | 0.4830t 0.009.
0.8 1.8403+ 0.1631 | 0.4328t 0.007
0.1 1.974% 0.090. | 0.4586+ 0.064
102 0.5 2.0418+ 0.200' | 0.4377+ 0.004
0.8 1.9678 0.094 | 0.4666+ 0.001:
0.1 1.8476+ 0.093 | 0.474% 0.027
10™ 0.5 1.8470+ 0.126 | 0.4109+ 0.019
0.8 1.836% 0.087 | 0.3930+ 0.021
0.1 2.0328t 0.075' | 0.4628t 0.019:
1072 0.5 100 | 2.0199+ 0.120 | 0.4823t 0.001.
0.8 2.0099% 0.072. | 0.4529+ 0.004
0.1 1.9689+ 0.087. | 0.4688t 0.058.
10°° 0.5 1.9692+ 0.122. | 0.4788t 0.003'
0.8 2.0022+ 0.074 | 0.4752+ 0.001

As we can see from the results in all cases estmraceived on the basis of

approximation with the stepsizA =10" demonstrated significant left-hand
side bias despite small values of standard dewisitiDecrease of the stepsize
and increase of sample paths number for all vatfesl improved the esti-
mates and gave unbiased results with standard tamgaess then 5% for all
cases. Therefore, it is possible to conclude ti@tiost important impact during
parameters estimation of the processes (1.4) abil i€lthe stepsize selection.
Smaller values of the stepsize guaranties unbiasgmators of the SDEs pa-
rameters with relatively small standard deviatidn. the most cases for

H D{O.5,0.3 the standard deviation for the parameteiin both models was
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smaller than forH =0.1. This fact can be explained by the propertiesadf ¢
ored white noise (see Xiao et al. 2011).

Table 2. Monte Carlo experiments for the model (1.5)

A | H|N® fxstd, JEE g tstd,
0.1 1.8844t 0.053' | 0.0084+ 0.000. | 0.2035t 0.005:
10t | 05 1.7833t 0.086 | 0.0080t 0.000 | 0.2682+ 0.006
0.8 1.7985t 0.056 | 0.0079t 0.000. | 0.2292+ 0.002
0.1 2.0755t 0.026 | 0.009% 0.000 | 0.1806+ 0.005
102 | 05| 10 | 1.9404+ 0.043'| 0.0100+ 0.000 | 0.2404+ 0.005
0.8 1.9850t 0.023. | 0.0099t 0.000. | 0.2368+ 0.003
0.1 1.9550 0.030" | 0.0088t 0.000¢ | 0.2479%t 0.016
10°% | 05 1.9885 0.018. | 0.0095t 0.000 | 0.222% 0.008
0.8 2.0040t 0.024 | 0.0090+ 0.000 | 0.0243t 0.003
0.1 1.8032t 0.058 | 0.007k 0.000" | 0.1869t 0.006
10" | 05 1.8320t 0.050' | 0.0073t 0.000 | 0.2175t 0.003
0.8 1.7945 0.061.| 0.007k 0.000 | 0.2232+ 0.002
0.1 1.9723¢ 0.027!| 0.0085+ 0.000 | 0.185k 0.004
102 | 0.5 100 | 1.990Gt 0.027 | 0.0098t 0.000 | 0.2446+ 0.003
0.8 1.9950t 0.021'| 0.0092+ 0.000' | 0.228Q+ 0.001
0.1 2.0028t 0.022 | 0.0096+ 0.000 | 0.2293t 0.014
10° | 0.5 1.9756+ 0.034. | 0.009&t 0.000¢ | 0.2198t 0.009
0.8 1.9915 0.018 | 0.010k 0.000' | 0.2333t 0.003

4. The Whooping Crane population model

The Whooping Crane (Grus Americana) is one of egeaad species since
1938. During recovery period (1938 — 2005) the agen which was observed
in Aransas National Wild-life Refuge and Wood BidfdNational Park grew
from 18 to 217 individuals. Annual data (coded isorresponding to number
of individuals (coded as(t)) observed in October are shown in Fig. 1.
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Fig. 1. Annual observations of Whooping Cranes populatmmted every October

The problem of this population model selection wédely studied starting
with Dennis et al. (1991). In the book of Allen 0 the nonparametric method
was used to find the parameters of the model, m@gdor the description of the
dynamics of Whooping Cranes population. This mades$ given by following
SDE (Allen 2007, p. 122)

dX, =0.0361X, dt +./ 057X dB,, X, =18, (4.1)

where dB, is an increment of the ordinary Brownian motion.

We used the model (4.1) for comparison with our imaxn likelihood ap-
proach. For this purpose, parameter was estimated by semiparametric
method (Filatova and Grzywaczewski, 2007a). Sinkk=0.560z and

p(H Z 0.5) < 0.00¢z that indicates the long-range dependence prooesei

population dynamics. Using recommendation of previgubsection and re-
coding time variable ast;¢;,, =0, t,,=0.012¢, t,,,=0.025C,..., we es-
timated parameters of the models (1.4) and (1.8)gan following results:

dX, =3.0890X,dt + 1.8743¢& (dt)**”, (4.2)

dX, =(3.7641X, - 0.0112X?)dt+ 0.1278,¢ (dt)"*™.  (4.3)
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To compare the models (4.1) — (4.3) we u§gdstatistics as a goodness—
of—fit test for an SDE model (see Allen (2007), pB3 — 185). This test statis-
tics is approximately distributed asy’ random variable withMl —n degrees
of freedom, wheréM stands for the number of the simulations usedhtb Q
and n is a number of the parameters in the modeb(lja(z(M )= Q) is smaller

than a preset level of significance that means a lack—of—fit of the SDE model
with data. Settingr =0.05 and M =8, we got p(x*(6)> 4.1019 < 0.65 for

the model (4.1), p()(2(6)29.0509< 0.22 for the model (4.2), and

p()(2(5) > 4.091@ < 0.72 for the model (4.3). As we can see all the models

can be used for the population description. Howetedding into account long—
range dependences with the appropriate model geiemiiows to get better fit
to the data.

5. Conclusion

We studied the possibilities of stochastic modeimgingle species popula-
tion. We proposed the stochastic differential eigmatvith colored white noise,
which as the model gives more flexibility to debericomplexity of biological
systems. To find parameters of the stochasticeéidn#nd unlimited growth mod-
els we created maximum likelihood estimators. Nuca¢ simulations and
comparison studies showed the effectiveness ofmatihodology.

The short-range and long—range dependent procedghesnce biological
systems and have to be taken into account in pedciipplications as it was
shown in the optimal control task for the fishesgg Filatova et al. 2010). In the
future we will try to combine the ideas presentedehwith ideas of Xiao et al.
(2011) to find the estimation method for the SDEthwmixed fractional
Brownian motion.
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