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Summary 

The stochastic differential equation with colored white noise is used for the description of 
the dynamics of some selected biological communities. The deterministic models of single species 
population models are transformed to the stochastic models. The parametric identification of these 
models is done by the maximum likelihood method. The effectiveness of the estimation procedu-
res is proved by Monte Carlo simulations as well as checked on the real data for Whooping Crane 
population. 
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1. Introduction 

Biological systems such as the communities of animals and plants react on 
the changes of existence conditions, that is to say on environment actions and 
own states. That is why the description of the systems dynamics, connected with 
the selection of a mathematical model and its verification, is still open problem. 
The solution of this problem is never unique. Brännaström and Sumpter  (2006) 
stated that an effective population dynamics model has to take into account af-
tereffects and joint effects of different external and internal factors as far as the 
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exact nature of the noise in a population is never known and can be explained 
only as demographic and environmental noises. It is necessary to notice that the 
deterministic models presented by the ordinary or even the partial differential 
equations do not allow to analyze all kinds of the environmental fluctuations, 
especially, if they are significant. To improve the model, as it was done by Allen 
and Allen (2003), it is possible to involve more variables or to change a class of 
the models. Let us consider several possible transformations. 

The first mathematical description of the growth of a certain population was 
proposed by Malthus (1802). It is a linear differential equation given as (see 
Murray, 2006)  

 µ=t tdY Y dt , ( )0 0=Y t Y , (1.1) 

where tY ∈R  is the size of the population (the numbers of individuals), µ ⊆ R   

is the coefficient of the natural growth of the population, [ ]0,∈t t T , 

0t T< < ∞ . The unbounded growth model (1.1) is valid only in a few cases, as 

for example food resource, and describes a potential possibility of medium for 
the certain population as far as in real life situations the population size is 
bounded by environment capacity. 

Improvements of Malthus model introduced by Pearl and Reed (1920) gave 
possibilities to describe a sufficiently real growth law for many populations of 
microorganisms, animals and humans by non–linear differential equation (see 
Murray, 2006) 

 1µ  = − 
 

t
t t

Y
dY Y dt

K
, ( )0 0=Y t Y , (1.2) 

where the multiplier ( )1− tY
K  represents the medium resistivity for the increase 

of the population, 0K ≠  ( ⊆K R ) is the environment capacity. 
To describe the self–intoxication process of one–species population by the 

waste products of its own metabolism Volterra (1931) added integral delay to 
the Verhulst–Pearl model and got the following integral–differential equation 
(see Murray, 2006) 

 ( )
0

1µ τ τ
 

= − − − 
 

∫
t

t
t t

Y
dY Y r t d dt

K
, ( )0 0Y t Y= , (1.3) 
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where ( )⋅r  is the hereditary function which shows the influence of the prehis-

tory at the instant on the population dynamics, moreover, the integral term in-
troduces a process aftereffect. 

It is possible to notice that mentioned models are nested, namely we can 
come from the model (1.3) to the model (1.1) still dealing with the self–
intoxication process. It depends only on the values of the parameters. These 
models are idealistic and do not reflect influences of the external environment to 
the systems. In order to improve these models and to take into account random 
disturbances, which are not necessary small, we can suppose that system dy-
namics corresponds to some stochastic process. 

Let ( ), ,Ω F P  be a stochastic basis satisfying the usual conditions (see 

Jazwinski, 2007). Let :Y Ω → R  be the size of the population, such that 

ω ∈Ω , ( )Y yω = , and ( ) [ ]{ }0, ,v t t t T∈  be a continuous stochastic process, 

defined on ( ), ,Ω F P , such that its mean value function ( ) 0v t =  E  for every 

[ ]0,∈t t T  and ( )0 0v t =  ( [ ]⋅E  denotes the expectation operator). In addition, 

we suppose that this process has the following properties: 

(1) its increments ( ) ( )v t h v hτ+ − +  are independent and stationary for 

every [ ]0,t t Tτ> ∈  and every 0h > ; 

(2) the mean square continuity of  ( )v t  for every [ ]0,∈t t T ; 

(3) the regularity conditions, i.e. ( ) 2

0v t  < ∞
 

E  and 

( ) ( )var v t h v hτ+ − + < ∞    for every [ ]0,t t Tτ> ∈  and every 0h >  

( [ ]var ⋅  denotes the variance operator). 

Many different processes meet these conditions (see Jazwinski, 2007). To 
stay with this idea it is reasonable to use some stochastic process as far as it 
gives possibilities to describe different situations of external influences as long–
range or short–range dependences, aftereffects or absence of named situations. 

We use the colored white noise, which increments are ( )H

t dtξ  ( ( )~ 0,1tξ N  

i.i.d., 0 1H< <  is an fractal index), as a model of the process ( )v t  and rewrite 

the model (1.1) as the linear stochastic differential equation (SDE) 

 ( )H

t t t tdY Y Y dtµ σ ξ= + , ( )0 0Y t Y= , (1.4) 
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and models (1.2) and (1.3) as the non–linear SDE 

 ( ) ( )2 H

t t t t tdY Y Y dt Y dtµ β σ ξ= − + , ( )0 0Y t Y= , (1.5) 

where  µ ,  K
µβ =   and  σ  are some unknown parameters.  

Since (1.1) is called the unlimited growth model and (1.2), (1.3) are limited 
growth models, further on we call the model (1.4) as the stochastic unlimited 
growth model and model (1.5) as the stochastic limited growth model. The aim 
of this paper is to show the method for the parameters estimation of the SDEs 
(1.4) and (1.5). 

2. Parameter identification method 

2.1. Problem formulation 

The continuous stochastic processes [ ]{ }0, ,tY Y t t T= ∈  are assumed to be 

the unique strong solution of the SDEs (1.4) and (1.5), which in general form 
can be written as follows 

 ( ) ( ) ( ), ,
H

t t t tdY f Y dt g Y dtξ= +θ θ , ( )0 0Y t Y= , (2.1) 

where ( ), : n
tf Y × →θ R R R  and ( ), : n

tg Y × →θ R R R  are some function, 

θ  is a vector of n  unknown parameters. 
We suppose that for the process Y  there are real valued observations 

0 1, ,..., NX X X ∈R  made at the equidistant discretization times 

0 1 ... Nt t t T< < < = . We also remark that the stochastic difference equation 

 ( ) ( )1 , , H
k k k k kX X f X g X ξ+ = + ∆ + ∆θ θ ,  (2.2) 

(where  1k kt t+∆ = −  for 0,1,...,k N=  and 0 0X Y= ) is an discrete analog of the 

SDE (2.1) with accuracy  

 ( ) ( ) 2
1

∆≤−=∆ε ∆ CXY TTE , (2.3) 
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where positive constant C  does not depend on ∆ . The observations contain the 
information about the parameters vector ∈Θ ⊆θ R  (where Θ  specifies the set 
of allowable values for the parameters) that we wish to estimate. Since the col-
ored white noise, used in the model (2.1), is Markov process (see Jazwinski, 
2007), the maximum likelihood estimation of the parameters θ  is one of the 
possible solutions to the problem.  This requires the construction of the likeli-

hood function ( )θL  which is based on the probability density function (pdf) 

known for each transition (see Filatova and Grzywaczewski, 2007b or Hurn et 
al. 2003).  

Jumarie (2007) showed that first and second moments of the increments of 

the process kX , 0,1,...,k N= , are { } ( )| , ,kX X k f X∆ = ∆θE  and 

( ){ } ( )2 2 2| , , H
kX X k g X∆ = ∆θE . The pdf of ( )1 1,k kX t+ +  for a process (2.2) 

starting at ( ),k kX t  is 

( )
( )

( )( )
( )

2

1
1 1 2 22

,1
, | , ; exp .

2 ,2 ,

k k k
k k k k HH

kk

X X f X
pdf X t X t

g Xg Xπ
+

+ +

 − − ∆ = − ∆∆   

θ
θ

θθ

 (2.4) 

The joint density corresponds to the likelihood function 

 ( ) ( ) ( )
1

0 0 1 1
0

, ; , , ;
N

k k k k
k

pdf X t pdf X t X t
−

+ +
=

= ∏θ θ θL . (2.5) 

Finally, the parameters estimation task for the SDE (2.1) consists in  

 ( ) ( )ˆ sup
∈Θ

=
θ

θ θL L , (2.6) 

where θ̂  is the estimate of θ , ( )sup ⋅  is the least upper bound of  ( )θL  over 

all ∈Θθ . 

2.2. Stochastic unlimited growth model 

For the equation (1.4) functions are ( ),k kf X Xµ=θ  and ( ),k kg X Xσ=θ , 

where [ ]µ β= ,θ
T

. So, the maximum likelihood function is 
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 ( ) ( )21
1

2 2 22 2
0

1
, exp

22

N
k k k

HH
k kk

X X X

XX

µ
µ σ

σπσ

−
+

=

 − − ∆ = − ∆∆   
∏L .  

For the simplification we replace product function by sums 

 
( ) ( )

( ) ( )( )

21 1
21

2 2 2
00

2 2

1 1
log , log

2 2

log log 2 .
2

N N
k k k

kH
kk k

H

X X X
X

X

N

µ
µ σ

σ

σ π

− −
+

==

− − ∆
− = +

∆

+ + ∆

∑∑L
 (2.7) 

This simplification means that the task (2.6) has to be rewritten as follows 

 ( ) ( )( )ˆ inf log
∈Θ

= −
θ

θ θL - L ,  (2.8) 

where ( )inf ⋅  is the greatest lower bound of  ( )θL  over all ∈Θθ . 

The optimal solution of (2.8) can be determined if partial derivatives of 
(2.7) are zero, namely 

( ) 1
1

2 2
0

log ,
0

µ σ µ
µ σ

−
+

=

∂ ∆ ∆ + −− = ≡
∂ ∆ ∑

N
k k k

H
k k

X X X

X

L
, 

( ) [ ]21
1

3 2 2
0

log , 1
0

4 4

µµ σ
σ σ

−
+

=

− − ∆∂
− = − + ≡

∂ ∆∑
N

k k k
H

k k

X X X N

X

L
. 

Finally, we got following estimates of the parameters [ ]µ σ=ˆ ˆ ˆ,θ
T

 

 
1
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N
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k k
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−
+
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−
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− − ∆
=
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2.3. Stochastic limited growth model 

For the model (1.5) parameters functions are ( ) 2,k k kf X X Xµ β= −θ  and 

( ),k kg X Xσ=θ , where [ ]µ β σ= , ,θ
T

. Using the same arguments as in the 

previous case, we can write the negative log–likelihood function as 

 
( ) ( )( )

( ) ( )( )

2
2

1 1
1 2

2 2 2
0 0

2 2

1 1
log , , log

2 2

log log 2 ,
2

N N
k k k k

kH
k kk

H

X X X X
X

X

N

µ β
µ β σ

σ

σ π

− −
+

= =

− − − ∆
− = +

∆

+ + ∆

∑ ∑L
 (2.11) 

which allows to find partial derivatives 

 
( ) ( )

1
1

2 2
0

log , , N
k k

kH
k k

X X
X

X

µ β σ
µ β

µ σ

−
+

=

 ∂ ∆ −− = + − ∆ ∂ ∆  
∑

L
, (2.12) 

 
( ) ( )( )

1

12 2
0

log , ,µ β σ
µ β

β σ

−

+
=

∂ ∆− = − − − ∆
∂ ∆ ∑

N

k k kH
k

X X X
L

, (2.13) 

 ( ) ( ) 2
1

1

3 2 2
0

log , , 1
.

4

µ βµ β σ
σ σ σ

−
+

=

− − − ∆ ∂  − = − +
∂ ∆∑

N
k k k k

H
k k

X X X X N

X

L
 (2.14) 

Setting partial derivatives (2.12) – (2.14) equal to zero allows to find the optimal 

solution of (2.7), namely the following estimates µ β σ =  
ˆ ˆˆ ˆ, ,θ

T

 

 
1 1

1

0 0

1 1ˆˆ
N N

k k
k

k k k

X X
X

N X
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− −
+

= =

 −= + ∆ 
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( )1 11

0 0 1
21

0

ˆˆ
N N
k kk k k

N
k k

X X X

X

µ
β

− −
= =∆ +

−
=

− −∑ ∑=
∑

 (2.16) 
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and 

 
( ) 2

2
1 12

2 2
0

ˆˆ1
ˆ

N k k k k

H
k k

X X X X

N X

µ β
σ

− +

=

 − − − ∆
 =

∆ ∑ . (2.17) 

Remark 2.1. Since in both cases the estimates θ̂  contain 2σ̂  instead of σ̂  
and are found on the basis of (2.2), to determine the sing of the estimate of the 
parameter σ  the optimization of (2.7) has to be done under constrains (2.3). 
Moreover, the systems (2.9) – (2.10) and (2.15) – (2.17) require the iterative 
solution, which can be done by an appropriate numerical algorithm such as the 
L τπ  method (see Sobol, 1979). 

Remark 2.2. For the models (1.4) and (1.5) the maximum likelihood esti-

mation theory allows us to derive asymptotic properties of θ̂ , i.e. the estimates 
are a.s. consistent and asymptotically normal (for the details see Xiao et al. 
2011). 

3. Simulation experiments 

To illustrate the efficiency of the estimates (2.9) – (2.10) and (2.15) – 
(2.17), we completed some numerical experiments using Monte Carlo simula-
tions. The simulation procedure was as follows: 

1) set step interval 410−∆ = , [ ]0,5t ∈ , 1.0C = , starting values of the parame-

ters [ ]0.0,0.0s =θ
T

 in (1.4) and [ ]0.0,0.0,0.0= Ts
θ  in (1.5), the initial 

value 0 0 1Y X= = ; 

2) generate sample path of the standard Brownian motion for selected ∆ ; 

3) use this sample path for each value { }0.1,0.5,0.8∈H  to generate normal-

ized colored white noise by means of the fast Fourier transform (see Paxson, 
1997); 

4) setting the true value of the parameters, namely [ ]2.0,0.5=θ T

 in the model 

(1.4) and  [ ]2.0,0.01,0.25= T

θ  in the model (1.5) use (2.2) to obtain syn-

thetic data Y  for each sample path of colored white noise; 
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5) for models (1.4) and (1.5) find the estimates θ̂ , generating sample paths of 
colored white noise as in steps 2) – 3) and getting X  by (2.2) for 

{ }1 2 310 ,10 ,10− − −∆ ∈  and repeating this step  { }10,100∈SPN  times. 

  
The averaged estimates as well as their standard deviations are listed in Table 1 
and Table 2. 
 

Table 1. Monte Carlo experiments for the model (1.4) 

∆  H  SPN  ˆˆ µµ ± std  ˆˆ σσ ± std  

0.1 1.7668 0.1161±  0.3366 0.0382±  
0.5 1.7400 0.1685±  0.4080 0.0200±  110−  
0.8 1.7771 0.0651±  0.3263 0.0417±  
0.1 1.8173 0.0822±  0.4524 0.0247±  
0.5 1.9097 0.3223±  0.4830 0.0094±  210−  
0.8 1.8403 0.1630±  0.4328 0.0073±  
0.1 1.9741 0.0905±  0.4586 0.0648±  
0.5 2.0418 0.2006±  0.4377 0.0044±  310−  
0.8 

10 

1.9678 0.0947±  0.4666 0.0015±  
0.1 1.8476 0.0931±  0.4741 0.0270±  
0.5 1.8470 0.1267±  0.4109 0.0198±  110−  
0.8 1.8361 0.0871±  0.3930 0.0210±  
0.1 2.0328 0.0759±  0.4628 0.0198±  
0.5 2.0199 0.1209±  0.4823 0.0014±  210−  
0.8 2.0099 0.0723±  0.4529 0.0047±  
0.1 1.9689 0.0873±  0.4688 0.0588±  
0.5 1.9692 0.1223±  0.4788 0.0039±  310−  
0.8 

100 

2.0022 0.0740±  0.4752 0.0010±  
 
As we can see from the results in all cases estimates received on the basis of 

approximation with the stepsize 110−∆ =  demonstrated significant left–hand 
side bias despite small values of standard deviations. Decrease of the stepsize 
and increase of sample paths number for all values of H  improved the esti-
mates and gave unbiased results with standard deviations less then 5% for all 
cases. Therefore, it is possible to conclude that the most important impact during 
parameters estimation of the processes (1.4) and (1.5) is the stepsize selection. 
Smaller values of the stepsize guaranties unbiased estimators of the SDEs pa-
rameters with relatively small standard deviation. In the most cases for 

{ }0.5,0.8H ∈  the standard deviation for the parameter σ  in both models was 
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smaller than for 0.1H = . This fact can be explained by the properties of col-
ored white noise (see Xiao et al. 2011). 

Table 2. Monte Carlo experiments for the model (1.5) 

∆  H  SPN  ˆˆ µµ ± std  ˆ
ˆ

ββ ± std  ˆˆ σσ ± std  

0.1 1.8844 0.0539±  0.0084 0.0002±  0.2035 0.0052±  
0.5 1.7833 0.0865±  0.0080 0.0001±  0.2682 0.0069±  110−  
0.8 1.7985 0.0563±  0.0079 0.0002±  0.2292 0.0020±  
0.1 2.0755 0.0261±  0.0091 0.0001±  0.1806 0.0055±  

0.5 1.9404 0.0435±  0.0100 0.0001±  0.2404 0.0052±  210−  
0.8 1.9850 0.0234±  0.0099 0.0002±  0.2368 0.0032±  
0.1 1.9550 0.0307±  0.0088 0.0000±  0.2479 0.0166±  
0.5 1.9885 0.0184±  0.0095 0.0001±  0.2221 0.0089±  310−  
0.8 

10 

2.0040 0.0243±  0.0090 0.0001±  0.0243 0.0037±  
0.1 1.8032 0.0581±  0.0071 0.0000±  0.1869 0.0067±  
0.5 1.8320 0.0506±  0.0073 0.0000±  0.2175 0.0036±  110−  
0.8 1.7945 0.0614±  0.0071 0.0001±  0.2232 0.0025±  
0.1 1.9723 0.0276±  0.0085 0.0001±  0.1851 0.0045±  
0.5 1.9900 0.0277±  0.0098 0.0001±  0.2446 0.0033±  210−  
0.8 1.9950 0.0219±  0.0092 0.0000±  0.2280 0.0011±  
0.1 2.0028 0.0222±  0.0096 0.0000±  0.2293 0.0147±  
0.5  1.9756 0.0342±  0.0098 0.0000±  0.2198 0.0093±  310−  
0.8  

100 

1.9915 0.0183±  0.0101 0.0000±  0.2333 0.0037±  

4. The Whooping Crane population model 

The Whooping Crane (Grus Americana) is one of endangered species since 
1938. During recovery period (1938 – 2005) the population which was observed 
in Aransas National Wild–life Refuge and Wood Buffalo National Park grew 
from 18 to 217 individuals. Annual data (coded as  t) corresponding to number 
of individuals (coded as ( )X t ) observed in October are shown in Fig. 1. 
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Fig. 1. Annual observations of Whooping Cranes population counted every October  

 
The problem of this population model selection was widely studied starting 

with Dennis et al. (1991). In the book of Allen (2007) the nonparametric method 
was used to find the parameters of the model, proposed for the description of the 
dynamics of Whooping Cranes population. This model was given by following 
SDE (Allen 2007, p. 122)   

 0.0361 0.579t t t tdX X dt X dB= + , 0 18X = , (4.1) 

where tdB  is an increment of the ordinary Brownian motion.  

We used the model (4.1) for comparison with our maximum likelihood ap-
proach. For this purpose, parameter H  was estimated by semiparametric 
method (Filatova and Grzywaczewski, 2007a). Since 0.5602H =  and 

( )0.5 0.002p H ≠ <  that indicates the long–range dependence process in the 

population dynamics. Using recommendation of previous subsection and re-
coding time variable as  1938 0t = ,  1939 0.0125t = ,  1940 0.0250t =  ,...,  we es-

timated parameters of the models (1.4) and (1.5) and got following results: 

 ( )0.5602
3.0890 1.8743t t t tdX X dt X dtξ= + , (4.2) 

 ( ) ( )0.560223.7641 0.01121 0.1270t t t t tdX X X dt X dtξ= − + .  (4.3) 
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To compare the models (4.1) – (4.3) we used Q  statistics as a goodness–
of–fit test for an SDE model (see Allen (2007), pp. 183 – 185). This test statis-

tics is approximately distributed as a 2χ  random variable with M n−  degrees 

of freedom, where M  stands for the number of the simulations used to find  Q  

and n  is a number of the parameters in the model. If ( )( )2p M Qχ ≥  is smaller 

than a preset level of significance α  that means a lack–of–fit of  the SDE model 
with data. Setting 0.05α =  and 8M = , we got ( )( )2 6 4.1019 0.651p χ ≥ <  for 

the model (4.1),  ( )( )2 6 9.0502 0.223p χ ≥ <  for the model (4.2), and 

( )( )2 5 4.0916 0.723p χ ≥ <  for the model (4.3). As we can see all the models 

can be used for the population description. However, taking into account long–
range dependences with the appropriate model selection allows to get better fit 
to the data. 

5. Conclusion 

We studied the possibilities of stochastic modeling in single species popula-
tion. We proposed the stochastic differential equation with colored white noise, 
which as the model gives more flexibility to describe complexity of biological 
systems. To find parameters of the stochastic limited and unlimited growth mod-
els we created maximum likelihood estimators.  Numerical simulations and 
comparison studies showed the effectiveness of our methodology. 

The short–range and long–range dependent processes influence biological 
systems and have to be taken into account in practical applications as it was 
shown in the optimal control task for the fishery (see Filatova et al. 2010). In the 
future we will try to combine the ideas presented here with ideas of  Xiao et al. 
(2011) to find the estimation method for the SDE with mixed fractional 
Brownian motion. 
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