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Summary 

In this paper we present the construction of functional principal components and show that 
the problem of FPCA is reduced to multivariate PCA performed on some covariance matrix. An 
example concerning with data on how children walk is also presented.   
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1. Introduction 

When data are observed as a function of time (such as financial time series, 
temperature recorded by some central source, etc.), we refer to them as 
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functional data (see Ramsay and Dalzell, 1991). Since in many statistical 
applications realizations of continuous time series are available as observations 
of a process recorded in discrete time intervals, one crucial step is to convert 
discrete data to continuous functions, that is from vectors to curves. Functional 
data are a very convenient approach to dealing with data depending on time, 
providing theoretical tools which are indispensable for analyzing observations 
of the process recorded in discrete time intervals and converting them to 
continuous functions. 

Typically, the sample data contain a number of N independent replications 
of form  

 ( ) [ ]{ }TtNitxi ,0,,,2,1, ∈= K   (1.1) 

and the record of replication ( ) Nitxi ,,2,1, K=  might consist of iJ  pairs 

{ } iijij Jjyt K,2,1,, = , where ijt  denotes the argument, and ijy  the observed 

functional value. The choice of ijt  is very nonrestrictive, e.g. the argument 

values may vary between the records and need not be equally spaced. 
Furthermore, the number of observations iJ  can differ between the records. But 

nevertheless, the argument should lie in the range of values of interest, that 
means [ ]Tt ij ,0∈  for all i, j. 

Normally the construction of the functional observations ( )txi  using the 

discrete data ijy  takes place separately or independently for each record i. 

Therefore we will simplify notation by assuming that a simple function ( )tx  is 
being estimated. 

The first task is to convert the values Jyyy ,,, 21 K  to a function x  with 

values ( )tx  computable for any t, called functional objects. The conversion 
from discrete data to functions may involve smoothing (Ramsay and Silverman, 
2005). One smoothing procedure often used involves obtaining a representative 
function ( )tx  as the linear combination of K+1 base orthonormal functions kϕ :   

 ( ) [ ]






 ∈ϕ=∑

=

Tttctx
K

k
kk ,0,)(

0

. (1.2) 
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A simple linear smoother is obtained if we determine the coefficients of the 
expansion kc  by minimizing the least squares criterion  

 ( ) ( )
2

1 0
10 ,...,, ∑ ∑

= =







 ϕ−=
J

j

K

k
jkkjk tcycccS .  (1.3) 

The criterion is expressed more clearly in matrix terms as  

( ) ( ) ( )ΦcyΦcyc −−= TS , 

where vector ( )T
Kccc ,,, 10 K=c  contains the coefficients kc  and ΦΦΦΦ is a J by 

K+1 matrix containing the values ( )jk tϕ . 

Taking the derivative of criterion ( )cS  with respect to c  yields the 
equation  

0yΦΦcΦ =− TT 22  

and solving this for c provides the estimate ĉ  that minimizes the least squares 
solution,  

 ( ) yΦΦΦc T1Tˆ
−

= .  (1.4) 

 The smoothness degree depends on K, since small (large) values of K 
induce more (less) smoothed curves. The optimal number K of basic elements 
was selected by applying the Bayesian Information Criterion (BIC) to each 
function ( )tx  separately, and then taking the most frequently occurring value 
(the modal value) over all functions. The BIC measures goodness of fit (see 
Shmueli, 2010). 

Principal component analysis (PCA) is a standard approach to the 
exploration of variability in multivariable data. PCA uses an eigenvalue 
decomposition of the covariance matrix of the data to find directions in the 
observations space along which the data have the highest variability. For each 
principal component, the analysis yields a loading vector or weight vector which 
gives the direction of variability corresponding to that component. 
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In the functional context, each principal component is specified by a 
principal component weight function or eigenfunction ( )tu  defined on the same 
range of t as the functional data. 

The construction of functional principal components is described in Section 
2. Section 3 contains an example concerning with data on how children walk. 

2. Functional principal components 

Suppose we observe a sample of the process ( ) [ ]( )TLtX ,02∈ , where 

[ ]( )TL ,02  is the Hilbert space of square integrable functions on the interval 

[ ]T,0 , equipped with the scalar product  

 ( ) ( )∫= dssvsuvu, . (2.1) 

Remark. All integrals are taken over the interval [ ]T,0 . 

Moreover, suppose that ( ) 0=tEX  and assume the existence of the 

variance ( ) [ ])(2 tXEtVarX =  and covariance ( ) [ ])()(, tXsXEtsCovX =  

functions of ( )tX ; [ ]Tts ,0, ∈ . 
In functional principal components analysis (FPCA) we want to find 

orthonormal weight functions K,, 21 uu , such that the variance of the linear 
transformation is maximal. 

The weight functions satisfy: 

( )∫ == 122 dttuu mm , 

( ) ( )∫ == 0, dttutuuu mlml , ml ≠ . 

The linear combination is: 

 ( ) ( )∫== dttXtuXuU mmm , ,  (2.2) 

and the desired weight functions solve: 
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 XuVar m
mllmml uu

,maxarg
,, ≤= δ

,  (2.3) 

or equivalently: 

 ( ) ( ) ( ) dtdstutsCovsu mXm
mllmmulu
∫ ∫

≤δ=
,maxarg

,,
 ,  (2.4) 

where lmδ  is the Kronecker delta. 

The solution is obtained by solving the Fredholm functional eigenequation 

 ( ) ( ) ( )sudttutsCovX λ=∫ , .  (2.5) 

The eigenfunctions K,, 21 uu , sorted with respect to the corresponding 

eigenvalues K≥λ≥λ 21  solve the FPCA problem (2.3). The following 
relationship holds between eigenvalues and eigenfunctions: 

( ) ( ) ( )[ ] ( ) ( ) ( ) dtdstutsCovsudttXtuVarUVar mXmmmm ,∫ ∫∫ ===λ . 

In practice, the covariance function ( )tsCovX ,  is unknown and must be 
estimated from the functional dataset (1.1). For the functional sample (1.1), the 
estimator of the covariance function ( )tsCovX ,  has the form:  

 ( ) ( ) ( ) ( ) ( ) ( ),11
,,ˆ

1

ts
N

txsx
N

tstsvoC T
i

N

i
iX CφCφ

T==ϑ= ∑
=

 (2.6) 

where 

 ( ) ( ) ( ) ( )( ) [ ]Ttstttt K ,0,,,, 10 ∈ϕϕϕ= K

Tϕϕϕϕ  (2.7) 

and ( ) KkNicik ,,1,0;,,2,1 KK ===C .  

Dauxois, Pousse and Romain (1982) show that 

( ) ( ) 0,ˆ, →− tsovCtsCov XX  with probability one. 
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Suppose that the weight function ( )tu  has the expansion  

 ( ) ( ) ( ) ,
0

dφ ttdtu
K

k
kk

T=ϕ=∑
=

 (2.8) 

where ϕϕϕϕT(t) is given by (2.7) and ( )T
Kddd ,,, 10 K=d . 

Using this notation we have: 

( ) ( ) ( ) ( ) ( )[ ] ( ) CdCφdφφCCsφ
TTTTT s

N
dttt

N
dttutsvoC X

11
,ˆ == ∫∫ , 

since 

( ) ( ) 1+=∫ Kdttt Iφφ
T . 

Hence we have 

 ( ) ( ) .
1

dφCdCφ ss
N

TTT λ=  (2.9) 

Multiplying both sides of equation (2.9) by ϕϕϕϕ(s), and then integrating, we obtain  

 .
1

ddCC λ=T

N
 (2.10) 

We see that the problem of FPCA is reduced to multivariate PCA performed on 

the matrix .
1

CCT

N
 In practice, the matrix C is unknown and must be estimated 

by ( )ikcC ˆˆ = , KkNi ,,1,0;,,2,1 KK ==   (see formula (1.4)). 

Next, we find the nonzero eigenvalues jλ  and corresponding eigenvectors jd  

of the matrix .ˆˆ1
CCT

N
 

Having determined the eigenvectors jd  we determine its weight functions  
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 ( ) ( ) [ ]Ttttu jj ,0, ∈= φdT . (2.11) 

Hence the jth functional principal component is equal to  

( ) ( ) ( ) ( ) ( ) ( )

.,...2,1,,...,2,1,

,

0

0 0

====

=ϕϕ===

∑

∑∑ ∫∫

=

= =

jNidc

dtttdcdttxtutxtuU

ji

K

k
jkik

K

k

K

l
lkjkilijijij

dcT

(2.12) 

3. Analysis of the gait data 

Here we consider gait data described by Olshen et al. (1989) consisting of 
measurements of the angles made by the hip and by the knee of each of 39 
children at twenty time points in a single gait cycle. Thus corresponding to each 
children is a time series of 20 elements. 

The discrete time series for the N = 39 children were centered and then 
transformed into continuous function in the form (1.2) on the range [0, 1]. 

The base functions Kktk ,,1,0),( K=ϕ , form a Fourier orthonormal basis 

in the space [ ]( )1,02L : 

( ) ( ) ( ) ....,2,1,2cos2,2sin2,1 2120 =π=ϕπ=ϕ=ϕ − ktkttktt kk  

The values of the coefficients kc  in the expansion (1.2) were estimated by 

the least squares method. These coefficients form the matrix ( )rsĉˆ =C . 

The optimum number K of base functions )(tkϕ  in the expansion (1.2) was 

selected using the Bayesian Information Criterion (BIC). The optimal values of 
K for each of the 39 functions ( )tx  are contained in Table 1. 
The frequency distribution of the values of K is shown in Table 2. 

Hence the joint K for expansions of all functions ( ) 39,,2,1, K=itxi , is 

equal to 4 (for hip) and is equal to 6 (for knee). 
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Table 1. Optimal K for each of the children. 

K K K 
     No. 

hip knee 
             No. 

hip knee 
             No. 

hip knee 
1 18 6 14 4 6 27 8 18 
2 8 4 15 4 4 28 18 14 
3 6 6 16 6 10 29 12 4 
4 4 6 17 2 4 30 8 14 
5 2 8 18 4 4 31 6 6 
6 4 6 19 4 6 32 4 6 
7 6 2 20 4 6 33 6 10 
8 6 18 21 8 2 34 4 10 
9 10 6 22 4 8 35 8 8 
10 6 4 23 4 4 36 4 4 
11 4 6 24 2 2 37 8 18 
12 8 6 25 4 10 38 8 10 
13 6 6 26 4 6 39 6 8 

 

Table 2. Frequency distribution of values of K. 

K 2 4 6 8 10 12 18 
hip 3 15 9 8 1 1 2 

Frequency 
knee 3 8 14 4 5 2 3 

 
The most frequently considered objects are presented on a plot of the first 

two functional principal components. In this case the criterion for explanation of 
variability by the first two functional principal components is the expression 

%10021

∑λ
λ+λ

i

, where K≥λ≥λ 21  are the non–zero eigenvalues of the 

matrix .ˆˆ1
CCT

N
 In our case λ1 = 31.63, λ2 = 5.36 for hip and λ1 = 14.79, λ2 = 

8.72 for knee. All the non–zero eigenvalues are shown in Figures 1 and 2. The 
percentage of variability explained by the first two functional principal 
components is equal to 86.0% for hip and 68.85% for knee. 

The eigenvalues λ1 and λ2 correspond to the eigenvectors 

d1 hip = (0.978; 0.042; 0.201; –0.031; –0.007)T; 
d2 hip = (–0.120; 0.885; 0.373; –0.180; 0.175)T; 
d1 knee = (–0.511; –0.118; –0.696; 0.379; 0.238; 0.043; 0.193)T; 
d2 knee = (0.795; 0.061; –0.244; 0.536; 0.108; 0.023; 0.073)T. 
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Fig. 1. Scree graph (hip) 

 

 

Fig. 2. Scree graph (knee) 

 
Figures 3 – 6 show the first two weight functions of the form (2.11) constructed 
from the vectors d1 and d2 and the base functions )(tkϕ . 
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Fig. 3. The weight function )(1 tu hip  (73.59%) 

 

 

Fig. 4. The weight function )(2 tu hip  (12.42%) 
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Fig. 5. The weight function )(1 tu knee  (43.31%) 

 

 

Fig. 6. The weight function )(2 tu knee  (25.53%) 

 
Figures 7 – 8 present the 39 children on a plot of the first two functional 

principal components; the children’s coordinates were computed using formula 
(2.12). 
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Fig. 7. Plotted values of the first two functional principal components for individual child (hip) 

 

 

Fig. 8. Plotted values of the first two functional principal components for individual child (knee) 
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