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Summary

In this paper we present the construction of fuamal principal components and show that
the problem of FPCA is reduced to multivariate PCAfgrened on some covariance matrix. An
example concerning with data on how children walklso presented.
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1. Introduction

When data are observed as a function of time (asdimancial time series,
temperature recorded by some central source, ei®)refer to them as



6 KAROL DEREGOWSKI, MIROSEAW KRZYSKO

functional data (see Ramsay and Dalzell, 1991)ceSiim many statistical
applications realizations of continuous time seags available as observations
of a process recorded in discrete time intervatg corucial step is to convert
discrete data to continuous functions, that is freators to curves. Functional
data are a very convenient approach to dealing datia depending on time,
providing theoretical tools which are indispensadioie analyzing observations
of the process recorded in discrete time intenaasl converting them to
continuous functions.

Typically, the sample data contain a numbeNahdependent replications
of form

{x(t), i=12..,N, tO[0T] (1.1)

and the record of replicatio, (t) I =12,...,N might consist ofJ; pairs
{tij , yij},j =12...J,, where tij denotes the argument, ar)q the observed

functional value. The choice df;
values may vary between the records and need noedumlly spaced.

Furthermore, the number of observatiahscan differ between the records. But
nevertheless, the argument should lie in the rasfgealues of interest, that

meanst; 0[0,T] for alli, j.

is very nonrestrictive, e.g. the argument

Normally the construction of the functional obseimas X (t) using the
discrete datay; takes place separately or independently for eacordi.
Therefore we will simplify notation by assuming tlzasimple functionx(t) is

being estimated.
The first task is to convert the valugs, y,,...,Y; to a functionx with

values x(t) computable for any, called functional objects. The conversion

from discrete data to functions may involve smaaghiRamsay and Silverman,
2005). One smoothing procedure often used invablaining a representative

function X(t) as the linear combination &f+1 base orthonormal functiorgs, :

{x(t) = kEi:ckqak (t), tD[O,T]}. (1.2)
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A simple linear smoother is obtained if we detemniine coefficients of the
expansionc, by minimizing the least squares criterion

J

S(CO’Cll""Ck)ZZ(yj - }j Ck¢k(tj)j ' (1.3)

j=1
The criterion is expressed more clearly in magmxts as

S(c) = (y - ®c)' (y - ®c),

where vectorc = (c,,C,,...,C,)' contains the coefficients, and® is aJ by
K+1 matrix containing the value, (tj )

Taking the derivative of criterionS(c) with respect toc yields the
equation

20 '®dc-20"'y =0

and solving this foc provides the estimaté that minimizes the least squares
solution,

= (<I)T<I))_1(I)Ty . (1.4)

The smoothness degree depend¥psince small (large) values &f
induce more (less) smoothed curves. The optimalbeuid of basic elements
was selected by applying the Bayesian Informatioite@lon (BIC) to each

function x(t) separately, and then taking the most frequentbuoing value

(the modal value) over all functions. The BIC measugoodness of fit (see
Shmueli, 2010).

Principal component analysis (PCA) is a standargragch to the
exploration of variability in multivariable data.CRR uses an eigenvalue
decomposition of the covariance matrix of the datdind directions in the
observations space along which the data have tfeesi variability. For each
principal component, the analysis yields a loadiagtor or weight vector which
gives the direction of variability correspondingth@t component.
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In the functional context, each principal compon&tspecified by a
principal component weight function or eigenfunatia(t) defined on the same

range oft as the functional data.
The construction of functional principal componeistdescribed in Section
2. Section 3 contains an example concerning wita da how children walk.

2. Functional principal components

Suppose we observe a sample of the procé$s)[IL,([0,T]), where
L,([0,T]) is the Hilbert space of square integrable funetion the interval
[0,T], equipped with the scalar product

(u,v) = ju(s) v(s) ds. (2.1)

Remark. All integrals are taken over the inten[@ T] .

Moreover, suppose thaEX (t) =0 and assume the existence of the
variance Var, E[X (t)] and covariance Cov, (s,t) = E[X(s) X (t)]
functions ofX( ) st0[0,T].

In functional principal components analysis (FPOCA¢ want to find

orthonormal weight functionsl,,u,,..., such that the variance of the linear

transformation is maximal.
The weight functions satisfy:

Ju* = i () ct =
{u,u, ju, t)dt=0, 1 #m.
The linear combination is:
X) = [u,(t) X (1) dt, (2.2)

and the desired weight functions solve:



PRINCIPAL COMPONENTS ANALYSIS FOR FUNCTIONAL DATA 9

argmax  Var(u,, X), (2.3)
(U, Um) =0, 1 <m

or equivalently:

argmax ”u s) Cov, (s,t)u, (t)dsdt , (2.4)

<u|,um> Ojme! <

whered,, is the Kronecker delta.
The solution is obtained by solving the Fredholmctional eigenequation

[Covy (s t) u(t) dt = Au(s). (2.5)

The eigenfunctionsu,,u,,..., sorted with respect to the corresponding

eigenvaluesA, 2 A, ... solve the FPCA problem (2.3). The following
relationship holds between eigenvalues and eigetituns:

A, :Var(Um)=VarUum( dt] ”u ) Cov, (s,t)u,,(t)dsdt.

In practice, the covariance functiddov, (s,t) is unknown and must be
estimated from the functional dataset (1.1). Ferftinctional sample (1.1), the
estimator of the covariance functi@ov, (s,t) has the form:

N
Cov, (s,t) = %Z x (s i‘ 9" (s)C'Co(t), (2.6)
where

07 (1) = (9(t). 4, (t).....04 (1) stO[0T] (2.7)

andC=(c,) i=12...,N;k=0L...,K
Dauxois, Pousse and Romain (1982) show that
|Covy (s.t) = Covy (s,t)]| ~ O with probability one.
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Suppose that the weight functiaift) has the expansion
< T
u(t)=> ded, (=0 (t)d, (2.8)
k=0

whered(t) is given by (2.7) andl = (d,,d,,....d, )".
Using this notation we have:

[cov, (s:t) u(t) :%q)T(s)CTC[J. o(®)oT (t)dtfd :%q)T(s)CTCd,

o™ ®)dt =1,.,.

Hence we have
%(pT(s)CTCd = Ao"(s)d. 2.9)

Multiplying both sides of equation (2.9) ig¢s), and then integrating, we obtain

%CTCd = d. (2.10)

We see that the problem of FPCA is reduced to wariite PCA performed on

1 . o .
the matrlxﬁ C'C. In practice, the matri€ is unknown and must be estimated

by C = (€,),i=12...,N; k=01...,K (seeformula (1.4)).
Next, we find the nonzero eigenvalub§ and corresponding eigenvectallsf

of the matrix%éTCAZ.

Having determined the eigenvect@‘§ we determine its weight functions
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u,(t)=dje(t), tO[OT]. (2.12)

Hence thgth functional principal component is equal to

3. Analysis of the gait data

Here we consider gait data described by Olsheh €1289) consisting of
measurements of the angles made by the hip andhiéokriee of each of 39
children at twenty time points in a single gaitleydhus corresponding to each
children is a time series of 20 elements.

The discrete time series for tie= 39 children were centered and then
transformed into continuous function in the forn2{lon the range [0, 1].

The base functiong, (t), k = 01,...,K, form a Fourier orthonormal basis
in the space.*([01]) :

0o(t) =1 ¢, (t)=v2sin2knt, ¢, (t)=+2coszknt, k=12,....

The values of the coefficients, in the expansion (1.2) were estimated by

the least squares method. These coefficients foermiatrixC = (€.).

The optimum numbeK of base functiong, (t) in the expansion (1.2) was
selected using the Bayesian Information CriteriBIC]. The optimal values of
K for each of the 39 functiong(t) are contained in Table 1.

The frequency distribution of the valueskofs shown in Table 2.

Hence the joinK for expansions of all function; (t) i=12,...39,is

equal to 4 (for hip) and is equal to 6 (for knee).
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Table 1. OptimalK for each of the children.

K K K
No. hip | knee N hip | knee N hip | knee
1 18 6 14 4 6 27 8 18
2 8 4 15 4 4 28 18 14
3 6 6 16 6 10 29 12 4
4 4 6 17 2 4 30 8 14
5 2 8 18 4 4 31 6 6
6 4 6 19 4 6 32 4 6
7 6 2 20 4 6 33 6 10
8 6 18 21 8 2 34 4 10
9 10 6 22 4 8 35 8 8
10 6 4 23 4 4 36 4 4
11 4 6 24 2 2 37 8 18
12 8 6 25 4 10 38 8 10
13 6 6 26 4 6 39 6 8
Table 2. Frequency distribution of values kf
K 2 4 6 8| 10| 12| 18
Frequency hip 3] 15 9 8 1 1 2
knee| 3| 8 14| 4 5 2 3

The most frequently considered objects are predemtea plot of the first
two functional principal components. In this cdse triterion for explanation of
variability by the first two functional principalomponents is the expression

AL+ A
—~—-—2100%, where A, 2\, >... are the non-zero eigenvalues of the

2N
matrix %éTé In our case\; = 31.63,A\, = 5.36 for hip and\; = 14.79,A, =

8.72 for knee. All the non-zero eigenvalues arevehim Figures 1 and 2. The
percentage of variability explained by the firstotwunctional principal
components is equal to 86.0% for hip and 68.85%lese.

The eigenvalues; andA; correspond to the eigenvectors

dy nip = (0.978; 0.042; 0.201; —0.031; —0.007)

d2 nip = (~0.120; 0.885; 0.373; —0.180; 0.175)

d1 knee= (=0.511; —0.118; —0.696; 0.379; 0.238; 0.04398)";
0> o= (0.795; 0.061; —0.244: 0.536; 0.108; 0.023; 8)07
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Fig. 2. Scree graph (knee)

Figures 3 — 6 show the first two weight functiofsh® form (2.11) constructed
from the vectorsl; andd, and the base functiorgs, (t) .
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Fig. 4. The weight functiorll,,,, (t) (12.42%)
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Fig. 5. The weight functiorl, ... (t) (43.31%)
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Fig. 6. The weight functiorl, . ..(t) (25.53%)

Figures 7 — 8 present the 39 children on a plaheffirst two functional
principal components; the children’s coordinatesensomputed using formula
(2.12).
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Fig. 7. Plotted values of the first two functional pripal components for individual child (hip)

Fig. 8. Plotted values of the first two functional pripal components for individual child (knee)
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