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Summary 

The estimation problem of individual weights of objects using the chemical balance 
weighing design under the restriction on the number of times in which each object is weighted is 
considered. The additional assumption is that the errors have the same variances and they are 
equal correlated. The conditions under which the existence of an optimal chemical balance 
weighing design for p=v objects implies the existence of an optimal chemical balance weighing 
design for p=v+1 objects are given. Under these assumptions a new construction methods for the 
design matrix of the optimal chemical balance weighing design based on the incidence matrices of 
balanced block designs are given. 
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1. Introduction 

Let us suppose that we want to estimate the weights of p  objects by 
weighing them n  times on a chemical balance, np ≤ . If j th object weights 
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jw , then the expected weight iy  of the objects on the left pan minus one on the 

right pan is  
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where =ijx 1 if the object j th is on the left pan in the weighing i , =ijx -1 if it 

is on the right pan and 0=ijx  if it is not included in the weighing i . The 

matrix ( )ijx=X  is the weighing design matrix. ( )1,0,1−∈ × pnΦX , where 

( )1,0,1−× pnΦ  denotes the class of pn ×  matrices having entries =ijx -1, 0 or 

1. Let e  be the vector of random errors. We assume that there are not systematic 
errors, they have the same variances and they are equal correlated according to 
the matrix  
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i.e. ( ) n0e =E  and ( ) Gee 2' σ=E .  

The matrix XGX 1' −  is the information matrix of the design. If XGX 1' −  is 

nonsingular, then weighted least square estimator of ( )'21 ,...,, pwww=w  is 

given by ( ) yGXXGXw 1'11'ˆ −−−=  and the variance matrix of ŵ  is of the form 

( ) ( ) 11'2ˆ
−−σ= XGXwVar . Under the assumption that all weights jw  are 

estimable, the problem we face with in this situation, is to construct the design 
matrix in such a way, that the best linear unbiased estimators of the weights are 
optimal according to the given optimality criterion. 

Hotelling (1944) studied the estimation problem for the case nIG =  and 

under the assumption that all objects are included in each measurement 
operation. The problems related to the determining unknown measurements of 
objects in the model of the optimal chemical balance weighing design is also 
considered in Raghavarao (1971), Banerjee (1975), Shah and Sinha (1989). The 
generalization of above problem was presented in Ceranka and Katulska (1998). 
Authors gave the necessary and sufficient conditions under which the lower 
bound of the variances of estimators was attained for the model of optimal 
chemical balance weighing design with equal correlated errors under an 
assumption that the elements of the matrix X  are equal to -1 or 1, only. The 
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similar problem was considered in Ceranka and Graczyk (2003, 2004) under the 
assumption that the elements of the design matrix X  are equal to -1, 0 or 1. 
They gave the lower bound of the variance of each of the estimators and the 
definition of the optimal design.  

Theorem 1.1. In the nonsingular chemical balance weighing design 
( )1,0,1−∈ × pnΦX  under the assumption pn 01X ='  and with the covariance 

matrix of errors G2σ , where G  is given by (1.1), the variance of the estimated 
measurements of objects ŵ  can be no less then 

 ( ) ( )
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where m  is the number of elements equal to -1 or 1 in the j th column of 

( )1,0,1−∈ × pnΦX , 
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Definition 1.1. Any nonsingular chemical balance weighing design 
( )1,0,1−∈ × pnΦX  under the assumption pn 01X ='  and with the covariance 

matrix of errors G2σ , where G  is given by (1.1), is optimal if the variance of 
each pjw j ,...,2,1,ˆ = , attains the lower bound given in Theorem 1.1. 

The variance of estimators in optimal chemical balance weighing design is 
equal to 

 ( ) ( )
pj

m

g
w j ,...,2,1,

1
ˆ 2 =ρ−σ=Var .  (1.2) 

Ceranka and Graczyk (2004) gave the necessary and sufficient conditions 
under which the chemical balance weighing design is optimal in the following 
Theorem. 

Theorem 1.2. Any nonsingular chemical balance weighing design 
( )1,0,1−∈ × pnΦX  under the assumption pn 01X ='  and with the covariance 

matrix of errors G2σ , where G  is given by (1.1), is optimal if and only if 

 pmIXX =' .  (1.3) 
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In this paper we study method of construction of an optimal chemical 
balance weighing design in the case ( )1,0,1−∈ × pnΦX  with the assumption 

pn 01X =' . This method uses the incidence matrices of balanced incomplete 

block design, balanced bipartite block design and ternary balanced block design 
for v  treatments to form the design matrix of optimal chemical balance 
weighing design for 1+= vp  objects.  

2. Optimal chemical balance weighing design for 1+= vp  objects 

Now, let assume that ( )1,0,1−∈ ×vnh h
ΦX  be the matrix of chemical balance 

weighing design, 2,1=h . We define the design matrix ( )1,0,1−∈ × pnΦX , 

where ( )212 nnn += , of the chemical balance weighing design for 1+= vp  
objects as  
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where 
1n1  is the 11 ×n  vector of units and 

2n0  is the 12 ×n  vector of zeros.  

Theorem 2.1. Any nonsingular chemical balance weighing design 
( )1,0,1−∈ × pnΦX  with the covariance matrix of errors G2σ , where G  is given 

by (1.1), is optimal if and only if 
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Proof. For ( )1,0,1−∈ × pnΦX  given by (2.1)  
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According to Theorem 1.2 the design is optimal if and only if 

1
'

+= vmIXX . Then from (2.4) we have (2.2) and (2.3), which complete the 

proof.  

In the consideration given above, we determine the optimal chemical 
balance weighing design for the estimation of unknown measurements of 
objects. The optimal design ( )1,0,1−∈ × pnΦX  is the same for any ρ , 
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n
, i.e. this design is robust for different ρ . The results given in the 

above Theorem imply the next corollary. 

Corollary 2.1. Any chemical balance weighing design ( )1,0,1−∈ × pnΦX  under 

the assumption pn 01X ='  and with the covariance matrix of errors nI2σ , is 

optimal for the estimated unknown measurements of objects if and only if such 
design is optimal for the estimated unknown measurements with the covariance 
matrix G2σ , where G  is given by (1.1). 

3. Balanced block designs 

In this section we remind the definitions of balanced incomplete block 
design given by Raghavarao and Padgett (2005), balanced bipartite weighing 
design given in Huang (1976) and ternary balanced block design given in 
Billington (1984). 

A balanced incomplete block design there is an arrangement of v  
treatments in b  blocks, each of size k  in such a way, that each treatment occurs 
at most once in each block, occurs in exactly r  blocks and each pair of 
treatments occurs together in exactly λ  blocks. The integers v , b , r , k , λ  are 
called the parameters of the balanced incomplete block design. Let N  be the 
incidence matrix of such a design. The parameters satisfy the following 

identities bkvr = , ( ) ( )11 −=− krvλ , ( ) ''
vvvr 11INN λλ +−= . 

A balanced bipartite block design there is an arrangement of v  treatments 
into b  blocks, such that each block containing k  distinct treatments is divided 
into 2 subblocks containing 1k  and 2k  treatments, respectively, where 

21 kkk += . Each treatment appears in r  blocks. Each pair of treatments from 

different subblocks appears together in 1λ  blocks and each pair of treatments 

from the same subblock appears together in 2λ  blocks. The integers v , b , r , 
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1k , 2k , 1λ , 2λ  are called the parameters of the balanced bipartite block design. 

Let *N  be the incidence matrix of such a design. The parameters satisfy the 
following equalities  

bkvr = , 
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A ternary balanced block design is defined as the design consisting of b  
blocks, each of the size k , chosen from a set of objects of size v , in such a way 
that each of the treatments occurs r  times altogether and 0, 1 or 2 times in each 
block (2 appears at least ones) and  each of the distinct pairs appears λ  times. 
Any ternary balanced block design is regular, that means, each treatment occurs 
once in 1ρ  blocks and twice in 2ρ  blocks, where 1ρ  and 2ρ  are constant for the 

design. Let N  be the incidence matrix of the ternary balanced block design. It is 
straightforward to verify that  

bkvr = , 21 2ρ+ρ=r , ( ) ( ) ( ) ( ) 221 212211 ρ−−=−ρ+−ρ=−λ krkkv ,  

( ) ( ) '
2

'
21

' 24 vvvvvv r 11I11INN λ+λ−ρ+=λ+λ−ρ+ρ= .  

4. Construction of the design matrix 

Let iN  be the incidence matrix of ternary balanced block design with the 

parameters v , hb , hr , hk , hλ , h1ρ , h2ρ , 2,1=h . Now, we define matrix 

( )1,0,1−∈ × pnΦX  in the form (2.1), where ''
vbhh i

11NX −= . Then  
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In this design we have 1+= vp , 11 bn = , 22 bn = . Thus, each of first v  

columns of X  contains 121121 ρ−ρ−+ bb  elements equal to -1, ( )12112 ρ+ρ  
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elements equal to 0 and 121121 ρ−ρ−+ bb  elements equal to 1. The last column 

of X  contains 1b  elements equal to -1, 22b  elements equal to 0 and 1b  
elements equal to 1. Clearly, the form of such design implies that the j th object 

is weighted ( )1211212 ρ−ρ−+ bb  times, vj ,...,2,1= , and the ( )1+v th object 

is weighted 12b  times in the ( )212 bb +  weighing operations.  
 
Theorem 4.1. Any nonsingular chemical balance weighing design 

( )1,0,1−∈ × pnΦX  given by (4.1) with the covariance matrix of errors G2σ , 

where G  is given by (1.1), is optimal for estimation unknown measurements of 
objects if and only if 

 022 222111 =λ+−+λ+− rbrb ,  (4.2) 

 11 rb =      and  (4.3) 

 12112 ρ+ρ=b .  (4.4) 

Proof. For the design matrix ( )1,0,1−∈ × pnΦX  given by (4.1) we have  

 ( ) vb br 11X 11
'
1 1

−= ,  (4.5) 

 '
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'
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'
1 vvv aa 11IXXXX +=+ ,  (4.6) 

where 222212111 22 λ−ρ++λ−ρ+= rra , 2221112 22 λ+−+λ+−= rbrba . 
According to Theorem 2.1, the chemical balance weighing design with 

( )1,0,1−∈ × pnΦX  given by (4.1) is optimal if the conditions (2.2) and (2.3) are 

fulfilled. The condition (4.5) is true if and only if 11 rb = . From (2.3) and the 

equation (4.6) we get 01 =a  and 12112 ρ+ρ=b . Hence the thesis.  

If the chemical balance weighing design given by matrix 
( )1,0,1−∈ × pnΦX  of the form (4.1) is optimal then 
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Now, let 1N  be the incidence matrix of ternary balanced block design with 

the parameters v , 1b , 1r , 1k , 1λ , 11ρ , 21ρ  and 2N  be the incidence matrix of 

balanced incomplete block design with the parameters v , 2b , 2r , 2k , 2λ . Now, 

we define matrix ( )1,0,1−∈ × pnΦX  in the form (2.1), where ''
11 1 vb 11NX −=  

and ''
22 2

2 vb 11NX −= . Thus 

 





















−
−

−−
−

=

22

22

11

11

'
2

'

''
2

'
1

'

''
1

2

2

bvb

bvb

bvb

bvb

0N11

011N

1N11

111N

X .  (4.7) 

In such a design we determine unknown measurements of 1+= vp  objects. 

Each object is weighted ( ) 11121 22 bbbm =ρ−+=  times in ( )212 bbn +=  
measurements operations. 

Theorem 4.2. Any nonsingular chemical balance weighing design 

( )1,0,1−∈ × pnΦX  given by (4.7) with the covariance matrix of errors G2σ , 

where G  is given by (1.1), is optimal for estimation of unknown measurements 
of objects if and only if 

 0)(42 222111 =λ−−+λ+− rbrb ,  (4.8) 

 11 rb =     and  (4.9) 

 112 ρ=b . (4.10) 

Proof. Proof of this theorem is similar to proof of Theorem 4.1.  

In particular case, when '
2 bv11N =  then the design is called randomize block 

design and we have the following corollary. 
 

Corollary 4.1. Any nonsingular chemical balance weighing design 
( )1,0,1−∈ × pnΦX  of the form 
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with the covariance matrix of errors G2σ , where G  is given by (1.1), is 
optimal for estimation of unknown measurements of objects if and only if 

 02 2111 =+λ+− brb  (4.12) 

and the conditions (4.9) and (4.10) are true. 

Now, let 1N  be the incidence matrix of ternary balanced block design with the 

parameters v , 1b , 1r , 1k , 1λ , 11ρ , 21ρ  and *
2N  be the incidence matrix of 

balanced bipartite weighing design with the parameters v , 2b , 2r , 12k , 22k , 

12λ , 22λ . Using the matrix *
2N  we form the matrix 2N  by replacing 12k  

elements equal to +1 of each column which correspond to the elements 

belonging to the first subblock by -1. Then each column of the matrix 2N  

contains 12k  elements equal to  -1, 2212 kkv −−  elements equal to 0 and 22k  

elements equal to 1. Now, we define the matrix ( )1,0,1−∈ × pnΦX  in the 

form (2.1), where ''
11 1 vb 11NX −=  and '

22 NX = . Hence 
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In such design we determine unknown measurements of 1+= vp  objects. 

Each object is weighted ( ) 12111 22 brbm =+ρ−=  times in ( )212 bbn +=  
measurements operations. 

Theorem 4.3. Any nonsingular chemical balance weighing design 
( )1,0,1−∈ × pnΦX  given by (4.13) with the covariance matrix of errors G2σ , 
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where G  is of (1.1), is optimal for estimation of unknown measurements of 
objects if and only if 

 02 1222111 =λ−λ+λ+− rb , (4.14) 

 11 rb =     and (4.15) 

 112 ρ=r . (4.16) 

Proof. Proof of Theorem 4.3 is similar to proof of Theorem 4.1.  

5. The block designs leading to optimal weighing designs 

From Theorem 4.1 follows that if parameters of two ternary balanced block 
designs satisfy the conditions (4.2)-(4.4) then a chemical balance weighing 
design with the design matrix ( )1,0,1−∈ × pnΦX  of the form (4.1) is optimal. 

Under these conditions we formulate a theorem following from the papers of 
Swamy (1982), Billington and Robinson (1983), Billington (1984) and Ceranka 
and Graczyk (2004). 

Theorem 5.1. The existence of two ternary balanced block designs with the 
parameters 

(i) 5=v , ( )241 += sb , ( )241 += sr , 51 =k , 741 +=λ s , 

( )1411 +=ρ s , 221 =ρ  and 5=v , ( )252 += sb , ( )232 += sr , 

32 =k , 32 +=λ s , 612 +=ρ s , s=ρ22 , ,...2,1=s , 

(ii)  5=v , ( )441 += sb , ( )441 += sr , 51 =k , )72(21 +=λ s , 

( )2411 +=ρ s , 421 =ρ  and 5=v , ( )452 += sb , ( )432 += sr , 

32 =k , 62 +=λ s , 1212 +=ρ s , s=ρ22 , ,...2,1=s , 

(iii)  6=v , ( )531 += sb , ( )531 += sr , 61 =k , 1331 +=λ s , 

5311 +=ρ s , 521 =ρ  and 6=v , ( )522 += sb , 52 += sr , 32 =k , 

22 =λ , s−=ρ 512 , 422 =ρ , 4,3,2,1=s , 

(iv) 7=v , 271 =b , 271 =r , 71 =k , 251 =λ , 1511 =ρ , 621 =ρ  and 

7=v , 212 =b , 122 =r , 42 =k , 52 =λ , 612 =ρ , 322 =ρ ,  
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(v) 9=v , ( )1431 += sb , ( )1431 += sr , 91 =k , 1131 +=λ s , 

4311 +=ρ s , 421 =ρ  and 9=v , ( )432 += sb , ( )422 += sr , 

62 =k , 52 +=λ s , 812 =ρ , s=ρ22 , ,...2,1=s , 

(vi) 11=v , 161 =b , 161 =r , 111 =k , 151 =λ , 611 =ρ , 521 =ρ  and 

11=v , 112 =b , 72 =r , 72 =k , 42 =λ , 512 =ρ , 122 =ρ ,  

(vii)  15=v , ( )451 += sb , ( )451 += sr , 51 =k , 1951 +=λ s , 

6511 +=ρ s , 721 =ρ  and 15=v , ( )432 += sb , ( )422 += sr , 

102 =k , 52 +=λ s , s2612 −=ρ , 1222 +=ρ s , 2,1=s , 

implies the existence of the optimal chemical balance weighing design 
( )1,0,1−∈ × pnΦX  given by (4.1) and with the covariance matrix of errors G2σ , 

where G  is given by (1.1). 

Proof. It is easy to prove that the parameters of ternary balanced block design 
satisfy the conditions (4.2)-(4.4). 

From Theorem 4.2 follows that if parameters of ternary balanced block 
designs and balanced incomplete block designs satisfy the conditions (4.8)-
(4.10) then a chemical balance weighing design with the design matrix 

( )1,0,1−∈ × pnΦX  of the form (4.7) is optimal. Parameters satisfying the 

conditions (4.8)-(4.10) are given in the following Theorem. 

Theorem 5.2. The existence of ternary balanced block designs and balanced 
incomplete block designs with the parameters 

(i) 7=v , 541 =b , 541 =r , 71 =k , 521 =λ , 4211 =ρ , 621 =ρ  and 

7=v , 422 =b , 122 =r , 22 =k , 22 =λ ,  

(ii)  10=v , 481 =b , 481 =r , 101 =k , 461 =λ , 3011 =ρ , 921 =ρ  and 

10=v , 302 =b , 92 =r , 32 =k , 22 =λ ,  

(iii)  13=v , 501 =b , 501 =r , 131 =k , 481 =λ , 2611 =ρ , 1221 =ρ  

and 13=v , 262 =b , 82 =r , 42 =k , 22 =λ ,  

(iv) 15=v , 701 =b , 701 =r , 151 =k , 681 =λ , 4211 =ρ , 1421 =ρ  

and 15=v , 422 =b , 142 =r , 52 =k , 42 =λ ,  
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(v) 21=v , 701 =b , 701 =r , 211 =k , 681 =λ , 3011 =ρ , 2021 =ρ  

and 21=v , 302 =b , 102 =r , 72 =k , 22 =λ ,  

implies the existence of the optimal chemical balance weighing design 
( )1,0,1−∈ × pnΦX  given by (4.7) and with the covariance matrix of errors G2σ , 

where G  is given by (1.1). 

Proof. One can easy check that the parameters of ternary balanced block design 
satisfy the conditions (4.8)-(4.10). 

In particular case when design ( )1,0,1−∈ × pnΦX  is given by (4.11) we have the 

following Theorem. 

Theorem 5.3. The existence of ternary balanced block designs and randomized 
block design with the parameters  
(i) 12=v , 181 =b , 151 =r , 101 =k , 111 =λ , 111 =ρ , 721 =ρ  and 

12=v , 12 =b ,  

(ii)  sv = , sb =1 , sr =1 , sk =1 , 11 −=λ s , 111 =ρ , ( )15,021 −=ρ s  

and sv = , 12 =b , 15,11,9,5=s , 

(iii)  34 += sv , 341 += sb , 341 += sr , 341 += sk , )1(21 +=λ s , 

111 =ρ , 1221 +=ρ s  and 34 += sv , 12 =b , ,...2,1=s , 

(iv) 12 += sv , ( )1221 += sb , ( )1221 += sr , 121 += sk , s41 =λ , 

211 =ρ , s221 =ρ  and 12 += sv , 22 =b , ,...2,1=s , 

(v) sv 2= , sb 41 = , sr 41 = , sk 21 = , ( )1221 −=λ s , 211 =ρ , 

1221 −=ρ s  and sv 2= , 22 =b , ,...2,1=s , 

implies the existence of the optimal chemical balance weighing design 
( )1,0,1−∈ × pnΦX  given by (4.7) with the covariance matrix of errors G2σ , 

where G  is given by (1.1). 
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Proof. The parameters of ternary balanced block design satisfy the conditions 
(4.9), (4.10) and (4.12). 

Now, we give the parameters of ternary balanced block designs and 
balanced bipartite block designs based on which we form the design matrix 

( )1,0,1−∈ × pnΦX  of the optimal chemical balance weighing design in the form 

(4.13). 

Theorem 5.4. The existence of ternary balanced block designs and balanced 
bipartite block designs with the parameters 

(i) 12 += sv , sb 91 = , sr 91 = , 121 += sk , 191 −=λ s , s711 =ρ , 

s=ρ21  and 12 += sv , ( )122 += ssb , sr 72 = , 212 =k , 522 =k , 

1012 =λ , 1122 =λ , ,...2,1=s , 

(ii)  14 += sv , sb 161 = , sr 161 = , 141 += sk , )18(21 −=λ s , 

s811 =ρ , s421 =ρ  and 14 += sv , ( )142 += ssb , sr 82 = , 

212 =k , 622 =k , 612 =λ , 822 =λ , ,...2,1=s , 

(iii)  sv 2= , )12(91 −= sb , )12(91 −= sr , sk 21 = , 11181 −=λ s , 

)12(711 −=ρ s , 1221 −=ρ s  and sv 2= , ( )1222 −= ssb , 

)12(72 −= sr , 212 =k , 522 =k , 2012 =λ , 2222 =λ , ,...3,2=s , 

(iv) 14 += sv , sb 91 = , sr 91 = , 141 += sk , 191 −=λ s , s511 =ρ , 

s221 =ρ  and 14 += sv , ( )142 += ssb , sr 52 = , 112 =k , 422 =k , 

212 =λ , 322 =λ , 2,1=s , 

(v) 11=v , 161 =b , 161 =r , 111 =k , 151 =λ , 611 =ρ , 521 =ρ  and 

11=v , 112 =b , 62 =r , 112 =k , 522 =k , 112 =λ , 222 =λ  

implies the existence of the optimal chemical balance weighing design 
( )1,0,1−∈ × pnΦX  given by (4.7) with the covariance matrix of errors G2σ , 

where G  is given by (1.1). 

Proof. One can prove that the parameters of ternary balanced block design 
satisfy the conditions (4.14)-(4.16). 
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Let us consider any hρ , 21,2,1,0,
1

1 ρ≠ρ=







−
−∈ρ h

nh . It is worth to 

point out that the design ( )1,0,1−∈ × pnΦX  satisfying Theorems 4.1-4.3 is 

optimal for the estimation of unknown measurements of objects in the sense of 
attaining minimal variance of the estimator of unknown measurements of 

objects for the covariance matrix G2σ , where G  is given by (1.1) for 1ρ  and 

2ρ . Simultaneously, the lower bound of variance given in (1.2) is not the same 
for different numbers of ρ . For a dipper discussion of robustness optimal design 
we refer the reader to Masaro and Wong (2008). 

6. Example 

Let us consider an experiment in which we determine unknown 
measurements of 6=p  objects using 24=n  measurement operations under 
the assumption that each object is weighted at least 20=m  times. To construct 
the design matrix ( )1,0,1624 −∈ ×ΦX  of the optimal chemical balance weighing 

design we use the incidence matrix of ternary balanced block design with 
parameters ,8,5,10,10,5 =λ====ν krb  21 =ρ , 42 =ρ ,  given by the 
incidence matrix  























=

2122120000

1220001220

2001202201

0202012012

0010220122

N

.  
Then we built the design matrix  ( )1,0,1624 −∈ ×ΦX  of optimal chemical 

balance weighing design in the form (4.11) and we have 
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

















−

−−
=

252

252

101

101

011

011

1X

1X

X , where 







































−−
−−
−−

−−
−−
−−

−−
−−
−−
−−

=

10111

01111

11110

11011

01111

11101

10111

11110

11101

11011

1X . For the 

( )1,0,1624 −∈ ×ΦX  design with covariance matrix of errors G2σ , where G  is 

of (1.1) we have ( ) ( )
6,...,2,1,

20
1

ˆ 2 =ρ−σ= j
g

w jVar . 
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