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Summary

The estimation problem of individual weights of etts using the chemical balance
weighing design under the restriction on the nundfdgimes in which each object is weighted is
considered. The additional assumption is that tnere have the same variances and they are
equal correlated. The conditions under which thestesce of an optimal chemical balance
weighing design fop=v objects implies the existence of an optimal chaimi@lance weighing
design forp=v+1 objects are given. Under these assumptions a nestraation methods for the
design matrix of the optimal chemical balance wigighdesign based on the incidence matrices of
balanced block designs are given.
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1. Introduction

Let us suppose that we want to estimate the weightp objects by
weighing themn times on a chemical balancg,< n. If jth object weights
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w; , then the expected weight of the objects on the left pan minus one on the
right pan is

p -
E(y,)=>xw,,i =12,...,n,
=t

where x; =1 if the object] th is on the left pan in the weighing x; =-1if it
is on the right pan anc; =0 if it is not included in the weighing. The
matrix X =(x”.) is the weighing design matrixX D(I)nxp(— ],O,l), where
(I)nxp(— ],O,l) denotes the class afx p matrices having entrieg; =-1, 0 or

1. Let € be the vector of random errors. We assume thed tre not systematic
errors, they have the same variances and theyoais eorrelated according to
the matrix

G= 9[(1'P)| ntPL, 1}1], g>0, pD(n_—_ll,O] (1.1)

ie. E()=0, andE(ee )= 0°G.
The matrix X G X is the information matrix of the design. ¥ G ™X is
nonsingular, then weighted least square estimatoka= (Wl,wz,...,wp)' is

given by w = (X'G 'lX)_lx'G "y and the variance matrix ot is of the form

Var(\iv):cz(X'G'lX)_l. Under the assumption that all weights, are

estimable, the problem we face with in this sitortiis to construct the design
matrix in such a way, that the best linear unbiassttmators of the weights are
optimal according to the given optimality criterion

Hotelling (1944) studied the estimation problem fioe caseG =1, and

under the assumption that all objects are includedeach measurement
operation. The problems related to the determininghown measurements of
objects in the model of the optimal chemical batama@ighing design is also
considered in Raghavarao (1971), Banerjee (19Hah @nd Sinha (1989). The
generalization of above problem was presented mra and Katulska (1998).
Authors gave the necessary and sufficient conditionder which the lower
bound of the variances of estimators was attaimedtHfe model of optimal

chemical balance weighing design with equal coreelaerrors under an
assumption that the elements of the malfixare equal to -1 or 1, only. The
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similar problem was considered in Ceranka and Gka(2003, 2004) under the
assumption that the elements of the design mafrixare equal to -1, 0 or 1.
They gave the lower bound of the variance of edcth® estimators and the
definition of the optimal design.

Theorem 1.1. In the nonsingular chemical balance weighing desig
X D(I)nxp(— ],0,1) under the assumptioD('ln =0, and with the covariance

matrix of errorsa*G, whereG is given by (1.1), the variance of the estimated
measurements of objecfs can be no less then

Var(\ivj)z 02@, j=12,...,p, (1.2)

where m is the number of elements equal to -1 or 1 in jhé column of
xmmmg—uny(mzéxﬂ.
Definition 1.1. Any nonsingular chemical balance weighing design

XO®,,,(-101) under the assumptioX 1, =0, and with the covariance

matrix of errorso®G, whereG is given by (1.1), is optimal if the variance of
each\ivj , ] =12,...,p, attains the lower bound given in Theorem 1.1.

The variance of estimators in optimal chemical be¢aweighing design is
equal to

Var(\ivj)=02@, j=12,..,p. (1.2)

Ceranka and Graczyk (2004) gave the necessary udfident conditions
under which the chemical balance weighing desigopiimal in the following
Theorem.

Theorem 1.2. Any nonsingular chemical balance weighing design
X D(I)nxp(— ],0,1) under the assumptioD('ln =0, and with the covariance

matrix of errorso’G , whereG is given by (1.1), is optimal if and only if

XX=ml,. (1.3)
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In this paper we study method of construction of gatimal chemical
balance weighing design in the caXell (I)nxp(— ],0,1) with the assumption

X1, =0,. This method uses the incidence matrices of bathriccomplete

block design, balanced bipartite block design amdary balanced block design
for v treatments to form the design matrix of optimalerical balance
weighing design forp = v +1 objects.

2. Optimal chemical balance weighing design for p =v+1 objects

Now, let assume thaX, 0@, . (- 101) be the matrix of chemical balance
weighing design,h=12. We define the design matriX O® (- 101),

where n= 2(n1 + nz), of the chemical balance weighing design forv+1
objects as

X, 1,
-X, -1

X = " 2.1
X, 0, (2.1)
_XZ on2

wherel, is then, x1 vector of units and, is then, x1 vector of zeros.

Theorem 21. Any nonsingular chemical balance weighing design
xXa (I)nxp(_ 10,1) with the covariance matrix of erroc&G , whereG is given

by (1.1), is optimal if and only if

X1, =0, and (2.2)
X X, + XX, =nyl,. (2.3)

Proof. For X 0@, (- 101) given by (2.1)
'y 2(X X, +X,X,) 2X1, | 0.

21, X, 2n,
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According to Theorem 1.2 the design is optimal #fidaonly if
XX =ml,. Then from (2.4) we have (2.2) and (2.3), whicitmptete the
proof.

In the consideration given above, we determine dp@mal chemical
balance weighing design for the estimation of umkmomeasurements of

objects. The optimal desigrX D(I)nxp(— J,O,l) is the same for anyp,
pDL_—ll,o] i.e. this design is robust for differept The results given in the
n —

above Theorem imply the next corollary.

Corollary 2.1. Any chemical balance weighing design[] (I)nxp(— ],O,l) under

the assumptionX 1, =0, and with the covariance matrix of errocgl , is

optimal for the estimated unknown measurementsjgats if and only if such
design is optimal for the estimated unknown measargs with the covariance

matrix 6°G , whereG is given by (1.1).

3. Balanced block designs

In this section we remind the definitions of bakhcdncomplete block
design given by Raghavarao and Padgett (2005)nd&edabipartite weighing
design given in Huang (1976) and ternary balancedkbdesign given in
Billington (1984).

A balanced incomplete block design there is an ngement of v
treatments irb blocks, each of siz& in such a way, that each treatment occurs
at most once in each block, occurs in exaatlyblocks and each pair of
treatments occurs together in exacllyblocks. The integers, b, r, k, A are
called the parameters of the balanced incomplaiekbiiesign. LetN be the
incidence matrix of such a design. The parametatisfg the following

identitiesvr =bk, A(v—=1)=r(k-1), NN =(r =A), + 11,1, .

A balanced bipartite block design there is an ayeament ofv treatments
into b blocks, such that each block containikgdistinct treatments is divided
into 2 subblocks containingk; and k, treatments, respectively, where

k =k, +k,. Each treatment appears tinblocks. Each pair of treatments from
different subblocks appears togetherAin blocks and each pair of treatments
from the same subblock appears togethex jrblocks. The integery, b, r,
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k., kK,, A;, A, are called the parameters of the balanced bipdntiick design.

Let N* be the incidence matrix of such a design. Thematers satisfy the
following equalities

vr =bk, b=

)\1V(V_1) A = )‘1(k1(k1 _1)+ kz(kz _1))
2kk, '? 2k k, ’
)\l(v_l)(kl + kz)
2k Kk, '
A ternary balanced block design is defined as g consisting ob
blocks, each of the size, chosen from a set of objects of sizgin such a way
that each of the treatments occursimes altogether and 0, 1 or 2 times in each

block (2 appears at least ones) and each of #tmcli pairs appeard times.
Any ternary balanced block design is regular, thatins, each treatment occurs

once inp, blocks and twice irp, blocks, wherep, andp, are constant for the
design. LetN be the incidence matrix of the ternary balancedlbtiesign. It is
straightforward to verify that

wr=bk, r=p+2p,,  AMv-1)=p,(k-1)+2p,(k-2)=r(k-1)-2p,,

NN = (r - _)‘2)| v +()‘1 +)\2)1v1;/'

NN =(p, +4p, -A)l, +AL,1, = (r +2p, - A)l, +AL,1, .

4. Construction of the design matrix

Let N; be the incidence matrix of ternary balanced bidekign with the
parametersv, b, r,, K., Ay, Py, Py N=212. Now, we define matrix
X 0@, (- 101) in the form (2.1), wher&, =N =1, 1,. Then

Nl‘—lbllY 1,
1,1,-N; -1

X = Nt')l—l 1.1 Obl . (4.1)
2 b, v b,
1,1,-N, 0,

In this design we havep =v+1, n, =b,, n, =b,. Thus, each of firsv
columns of X containsb, +b, —p,, —p,, elements equal to -]2(pll +p12)



ROBUSTNESS OF OPTIMAL CHEMICAL BALANCE WEIGHING DESNS... 57

elements equal to 0 arlgl +b, —p,, —p,, elements equal to 1. The last column

of X containsb, elements equal to -12b, elements equal to 0 anlg
elements equal to 1. Clearly, the form of suchgtesnplies that thej th object

is weightedZ(bl +b, —py, - plz) times, ] =12,...,v, and the(v+1)th object
is weighted2b, times in theZ(bl + bz) weighing operations.

Theorem 4.1. Any nonsingular chemical balance weighing design
X D(I)nxp(— :LO,l) given by (4.1) with the covariance matrix of es@’G,

where G is given by (1.1), is optimal for estimation unkromeasurements of
objects if and only if

b —2r,+A, +b,-2r,+A, =0, (4.2)
b =r, and (4.3)
b, =P, +Py,- (4.4)

Proof. For the design matriX Dtl)nxp(— lO,l) given by (4.1) we have

X1, =(r b1, (4.5)
X X, +X,X, =al, +a,1,1,, (4.6)

where a, =r,+2p, —A, +1,+2p,,—A,, @& =b -2r,+A +b,-2r, +A,.
According to Theorem 2.1, the chemical balance hiagy design with
X O®,,, (- 101) given by (4.1) is optimal if the conditions (22)d (2.3) are
fulfilled. The condition (4.5) is true if and onlf b, =r,. From (2.3) and the
equation (4.6) we get, =0 andb, =p,, +p,,. Hence the thesis.

If the chemical balance weighing design given by trina
XO®,,(-101) of the form (41) is optimal then

2
A 1-p) .
Var(wj)z%blp), ] =12,...,p.
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Now, let N, be the incidence matrix of ternary balanced bldegign with
the parametery, b, r,, ki, A, p;;, P,, and N, be the incidence matrix of
balanced incomplete block design with the paramseatet,, I,, k,, A,. Now,
we define matrixX O®,, (- 101) in the form (2.1), whereX, =N, -1, 1,

nxp

andX, =2N, -1,1,. Thus

N;-1,%, 1,

x=| LN~ (4.7)
2N,-1,1, 0,
1,1,-2N, O,

In such a design we determine unknown measurenoén{3 =V +1 objects.
Each object is weightedm=2(b, +b, —p,;)=2b times in n=2(b +b,)
measurements operations.

Theorem 4.2. Any nonsingular chemical balance weighing design
XOd (— :LO,l) given by (4.7) with the covariance matrix of es@’G,

nxp
where G is given by (1.1), is optimal for estimation ofkmown measurements
of objects if and only if

b, —2r, +\, +b, —4(r,—A,) =0, (4.8)
b =r, and (4.9)
b, =p,s. (4.10)

Proof. Proof of this theorem is similar to proof of Them 4.1.

In particular case, wheM, =11, then the design is called randomize block
design and we have the following corollary.

Corollary 4.1. Any nonsingular chemical balance weighing design
XD(I)nXp(— :LO,l) of the form
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N;-1,1, 1,
1.1,-N, -1
X =| RV 1 by (4.11)
1b21.v 0,
L L 0

with the covariance matrix of errors®’G, where G is given by (1.1), is
optimal for estimation of unknown measurementshjpécts if and only if

b —2r,+A, +b, =0 (4.12)
and the conditions (4.9) and (4.10) are true.

Now, let N, be the incidence matrix of ternary balanced bldekign with the
parametersv, b, r,, k;, A,, p,;, P, and N be the incidence matrix of
balanced bipartite weighing design with the paramsev, b,, r,, K,, K,,,
Ao, Ay,. Using the matrixN, we form the matrixN, by replacingk,,
elements equal to +1 of each column which corredptm the elements
belonging to the first subblock by -1. Then eachurm of the matrixN,
containsk,, elements equal to -M-Kk,, —K,, elements equal to 0 arkl,
elements equalo 1. Now, we define the matrix D(I)nxp(— 101) in the

form (2.1), whereX, =N, -1,1, and X, = N,. Hence

N, -1,1, 1,

B (4.13)
Nz Ob2
_N‘z Ob2

In such design we determine unknown measurementp sfv+1 objects.
Each object is weightedn= 2(b1 -py, t rz) =2b, times in n= 2(bl + bz)
measurements operations.

Theorem 4.3. Any nonsingular chemical balance weighing design
X O®,,, (- 101) given by (4.13) with the covariance matrix of esr@’G,

nxp
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where G is of (1.1), is optimal for estimation of unknowmeasurements of
objects if and only if

b —2r,+\, +A,,—A,, =0, (4.14)
b=r, and (4.15)
Iy =Pu- (4.16)

Proof. Proof of Theorem 4.3 is similar to proof of Thexr4.1.

5. Theblock designsleading to optimal weighing designs

From Theorem 4.1 follows that if parameters of texmary balanced block
designs satisfy the conditions (4.2)-(4.4) thenhangical balance weighing
design with the design matriX D(I)nxp(— lO,l) of the form (4.1) is optimal.

Under these conditions we formulate a theorem Wolig from the papers of
Swamy (1982), Billington and Robinson (1983), Bijton (1984) and Ceranka
and Graczyk (2004).

Theorem 5.1. The existence of two ternary balanced block desigith the
parameters

() v=5, b =4s+2), =4(s+2), k =5, A\, =4s+7,
2

P, =4(s+1), p, =2 and v=15 bh,=5(s+2), r,=3s+2),
k,=3,A,=s+3,p,=S+6, p,, =S, s=12,..,,
(ii) =5, b =4(s+4), r1=4(s+4) k,=5, A\, =2(2s+7),

v

P11 4( + ) P,,=4 and v=5 b, —5( ) r, :3(s+4),

k,=3, A, =s+6, p,, =s+12, p22—s s=12,..

iy v=6, b =3(s+5), r,=3(s+5), k=6, A, =3s+13
p,,=3s+5, p,, =5 andv= § b, =2(s+5), r, =s+5, k, =3,
)\2 =2,p,=5-5s,p,, =4, s= 1234,

(iv) , b =27, 1r,=27, kK, =7, A\, =25, p,, =15, p,, =6 and
,b2 21,r,=12, k, =4, A, =5, p,, =6, p,, =3,
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(v) v=9, b =3(s+14), r =3(s+14), k, =9, A, =3s+11,
p,, =3s+4, p,,=4 and v= 9, b2=3(s+4), r
k,=6, A, =s+5,p,,=8,p,,=S,s=12,...,

(vi) v=11, b, =16, r, =16, k, =11, A, =15, p,; =6, p,, =5 and
v=11,b,=11,r,=7,k, =7, A, =4, p,, =5, p,, =1,

(viy v=15, b =5(s+4), r =5(s+4), k =5, A, =5s5+19,
p,, =5s+6, p,,=7 and v=1§ b2=3(s+4), r2:2(s+4),
k, =10, A, =s+5, p,, =6-2s, p,, =2s+1, s=12,

implies the existence of the optimal chemical be¢anveighing design
XOo (— LO,l) given by (4.1) and with the covariance matrix obes 0°G ,

nxp

whereG is given by (1.1).

Proof. It is easy to prove that the parameters of tgrbatanced block design
satisfy the conditions (4.2)-(4.4).

From Theorem 4.2 follows that if parameters of agynbalanced block
designs and balanced incomplete block designsfysatie conditions (4.8)-
(4.10) then a chemical balance weighing design wite design matrix

XO®,,(-101) of the form (4.7) is optimal. Parameters satigjyithe
conditions (4.8)-(4.10) are given in the followileorem.

Theorem 5.2. The existence of ternary balanced block desigrmk atanced
incomplete block designs with the parameters

() v=7, b =54, 1, =54, k =7, \, =52, p,, =42, p,,=6 and
v=7,b,=42,r,=12,k, =2, A, =2,

(i) v=10, b =48, r, =48, k, =10, A, =46, p,; =30, p,, =9 and
v=10, b, =30,r1,=9, k, =3, A, =2,

(i)  v=13, b, =50, r, =50, k, =13, A, =48, p,, =26, p,, =12
andv=13 b, =26,1,=8, k, =4, A, =2,

(iv) v=15, b =70, r, =70, k, =15, A\, =68, p,, =42, p,, =14
andv=15hb,=42,r,=14, k, =5, A, =4,
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(v) v=21, b =70, r, =70, k, =21, A, =68, p,, =30, p,, =20
andv= 21 Db,=30,r,=10, k, =7, A, =2,

implies the existence of the optimal chemical be¢anveighing design
X D(I)nxp(— LO,l) given by (4.7) and with the covariance matrix wbes 0°G ,

whereG is given by (1.1).

Proof. One can easy check that the parameters of tebadaypced block design
satisfy the conditions (4.8)-(4.10).

In particular case when desigal] ‘anp(— lO,l) is given by (4.11) we have the
following Theorem.

Theorem 5.3. The existence of ternary balanced block desigdsrandomized
block design with the parameters

() v=12, b =18, r, =15, k, =10, A, =11, p,; =1, p,, =7 and
v=12, b, =1,

(i) v=s, b=s,1=s, k=s, A\,=s-1, p;, =1, p21=0,5(s—1)
andv=¢g, b, =1, s= 5911,15,

(i)  v=4s+3, b =4s+3, r,=4s+3, k =4s+3, A, =2(s+]),
P, =1, p,, =2s+1l andv=4s+ 3 b, =1, s=12,..,

(v) v=2s+1, b =2(2s+1), r,=2(2s+1), k =2s+1, A, =4s,
P,=2,pP,,=2sandv=2s+ 1 b, =2,s=12,..,

(v v=2s, b =4s, r=4s, k=2s, A =2(2s-1), p,=2,
p,, =2s-landv=2s,b,=2,s=12,...,

implies the existence of the optimal chemical be¢anveighing design
X D(I)nxp(— LO,l) given by (4.7) with the covariance matrix of es@?’G,

whereG is given by (1.1).
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Proof. The parameters of ternary balanced block desigjsfg the conditions
(4.9), (4.10) and (4.12).

Now, we give the parameters of ternary balancedkbldesigns and
balanced bipartite block designs based on whichfox the design matrix
X D(I)nxp(— ],O,l) of the optimal chemical balance weighing desigthanform

(4.13).

Theorem 5.4. The existence of ternary balanced block desigmk keanced
bipartite block designs with the parameters

(i) v=2s+1, b =9s, r,=9s, k =2s+1, A, =9s-1, p,, =7s,
Py =s andv=2s+1 b228(28+1), r,=7s, k, =2, ky, =5,
A, =10, A, =11, s=12,...,

(i) v=4s+1l, b =16s, 1, =16s, k =4s+1l, A, =2@s-1),
P, =8s, p,,=4s and v=4s+] bZ:s(4s+1), r, =8s,
k,=2,k,=6,A,=6,A,=8,s=12,..,,

(i) v=2s, b =92s-1), r,=92s-1), k =2s, A, =18s-11,
Pp,=72s-D), p,=2s-1 and v=2s, b,= 25(25—1),
r,=72s-1, k, =2, k,,=5, A, =20, A,, =22, s=23,...,

(iv) v=4s+1, b, =9s, r,=9s, k =4s+1, A, =9s-1, p,, =5s,
le ZZS andv=4s+ :L b2 =S(4S+1), r2 :55, k12 =1) k22 =4)
A, =2, A, =3, =12,

(v) v=11, b =16, r, =16, k, =11, A, =15, p,, =6, p,, =5 and
v=11 b, =11,1,=6, k, =1, k,, =5, A, =1, A, =2

implies the existence of the optimal chemical bedanveighing design

XO®, (-101) given by (4.7) with the covariance matrix of es @G,

whereG is given by (1.1).

Proof. One can prove that the parameters of ternarynbath block design
satisfy the conditions (4.14)-(4.16).
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Let us consider anp, , p, D(_—ll } h=12 p, #p,. It is worth to

point out that the desigiX D(I)nxp(— lO,l) satisfying Theorems 4.1-4.3 is

optimal for the estimation of unknown measuremeifitsbjects in the sense of
attaining minimal variance of the estimator of umkm measurements of

objects for the covariance matri’G , whereG is given by (1.1) forp, and
p,. Simultaneously, the lower bound of variance giirefil.2) is not the same
for different numbers op . For a dipper discussion of robustness optimabdes
we refer the reader to Masaro and Wong (2008).

6. Example

Let us consider an experiment in which we determumgknown
measurements op =6 objects usingn =24 measurement operations under

the assumption that each object is weighted at leas20 times. To construct
the design matrixX J® ., (— lO,l) of the optimal chemical balance weighing
design we use the incidence matrix of ternary ladnblock design with
parametersy =5 b=10,r =10,k=5A =8, p, =2, p, =4, given by the
incidence matrix

2210220100
2102102020
N=1 022021002
0221000221
00002122 1 2]

Then we built the design matriX L @, (— lO,l) of optimal chemical
balance weighing design in the form (4.11) and &aeh
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1 1 0 -1 -1

1 0 -1 1 -1

0 -1 1 1 -1

X, 1, -1 1 1 0 -1

-X; -1, 1 0 -1 -1 1
X= , WhereX; = . For the

1,1. O, 1 -1 1-1 0

-1,1, O, -1 1 0 -1 1

0 -1 -1 1 1

-1 1 -1 1 O

-1 -1 1 0 1

XUd,,, (— :LO,l) design with covariance matrix of erraréG , whereG is

of (1.1) we hava/ar(\ivj)zcz%;p), j=12,...6.
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