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Summary 

In the paper we consider a situation when a split-split-plot design is non-orthogonal with 
respect to whole plot treatments. Additionally, some of them are treated as control treatments. To 
generate a new treatment combination arrangement an orthogonally supplemented PEB block 
design with at most (m + 1) – classes of efficiency is taken into account. We present also statistical 
properties of the resulting design and an example. 
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1. Introduction 

This paper is a continuation of the paper of AmbroŜy and Mejza (2011) in 
which a traditional split-split-plot (SSP) design (e.g. Gomez and Gomez, 1984) 
was recalled. In the previous paper mainly we discussed statistical implications 
of a proposed non-orthogonality of the layout when the sub-subplot treatments 
occurred in some supplemented partially efficiency block (PEB) design with 
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(m + 1) – classes of efficiency. We also presented the randomization-derived 
mixed model of observations for complete and incomplete SSP designs and 
statistical properties such as orthogonal block structure and general balance. We 
defined so called strata in the model and stratum effectiveness of that SSP 
design with respect to estimable contrasts in them.  

In the present paper we consider a non-orthogonal SSP design in which 
whole plot  treatments occur in a supplemented PEB design with (m + 1) –
 classes of efficiency while the subplot treatments and the sub-subplot 
treatments are in appropriate randomized complete block (RCB) designs.  

The supplemented (augmented) block designs for one-factor experiments 
have been widely described in literature (e.g. Caliński 1971, Caliński and 
Ceranka 1974, Singh and Dey 1979, Puri et al. 1977, Kachlicka and Mejza 
1998, Caliński and Kageyama 2003, Sections 6.3. and 10.3.3). Generally, two 
sets of treatments are there. Usually one set is referred to as the set of basic 
(test) treatments and the other - the set of supplementary (control) treatments. 
The major aim of such experiments is the efficient comparison of both sets of 
treatments and the treatments inside those sets. 

This fact has been used in the construction of a new non-orthogonal layout 
of the SSP experiment in which there are additional whole plot treatments called 
control whole plot treatments. 

2. Assumptions and notations 

Let us consider a three-factor experiment in which the first factor, say A, 
has s levels A1, A2, …, As,  (called also the whole plot treatments), the second 
factor, say B, has t levels B1, B2, …, Bt (called the subplot treatments) and the 
third  factor, say C, has w levels C1, C2, …, Cw (called the sub-subplot 
treatments). Thus the number v = stw denotes the number of all treatment 
combinations in the experiment. 

There is assumed the experimental material can be divided into b blocks 
with sk <1  whole plots. Then, each whole plot is divided into tk =2  subplots 

with wk =3  sub-subplots. The s whole plot (A) treatments are randomly 

allocated to the whole plots within each block, t subplot (B) treatments are 
randomly allocated to the subplots within each whole plot, and w (C) sub-
subplot treatments are randomly allocated to the sub-subplots within each 
subplot. Hence, the third factor C is in a split-plot relation to the whole plot and 
subplot treatment combinations in the SSP design. Next in the paper we adopt 
the following notation: x1  is the x-dimensional vector of ones, xI  denotes x-

dimensional unity matrix and xxx 11J ′= . 
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3. Construction method  

This method is based on Kronecker product of three designs, in which the 
levels of three factors (A , B ,C ) are assigned. Consider a situation when t 
subplot (B) treatments  and w sub-subplot (C) treatments are in appropriate RCB 
designs whereas the s whole plot (A) treatments occur in a supplemented block 

design ∗d ( sv =∗ , ∗b , ∗k , ∗r ), where the parameters ∗v , ∗b , ∗k  mean 
numbers of the whole plot treatments, blocks, units inside each block in the 

subdesign ∗d , respectively and ∗r  denotes a vector of replicates of the all 
whole plot treatments. 

We also assume the whole plot (A) treatments consist of two groups: 

21 sss += , where 1s  test (basic) A  treatments are allocated in a subdesign 1

~
d  

which is a partially efficiency balanced (PEB) design with at most m efficiency 
classes (cf. Puri et al. 1977, Kageyama and Puri 1985, Caliński and Kageyama 
2000, Definition 4.3.1.) while 2s  additional (control) A  treatments – in a 

subdesign 2

~
d  represented by an orthogonal block design (cf. Caliński and 

Kageyama, 2000, Definitions 2.2.7-2.2.8).  

Let 1

~
N  be the 11 bs ×  incidence matrix of the subdesign 1

~
d  with 

parameters: 1s , 1b , 1

~
k , ],...,,[

11 21 ′= ss rrrr  jε , jρ  (∑
=

−=ρ
m

j
j s

1
1 1), which 

define number of treatments, number of blocks, size of blocks, vector of 
treatment replicates, eigenvalues and their multiplicities of so-called C- matrix 

of the subdesign 1
~
d , respectively (see the example in Chapter 4).  Then (cf. Puri 

and Nigam, 1977, Nigam and Puri, 1982, Caliński and Kageyama, 2003, e.g. 
Theorems 6.3.1. and 10.3.3.) 

 












′
= ∗ */)(

~

2

1
* ns

d kr

N
N ,   (3.1) 

is the incidence matrix of the PEB design with at most (m + 1)-classes of 
efficiency with parameters: 

21 sssv +==∗ ,  1bb =∗ , 11
~/

~
11

nknk bb 11k ∗∗∗ == , 

],...,,,...,,[],[ 121 1121
′=′′′== +

∗
∗ ssssssd

rrrrrrr1Nr , 

1*
0 =ε ,    2

*
0 s=ρ , )1)(/~(1 1 jnn ε−−= ∗∗

jε ,    jj ρ=ρ* ,  mj ,,2,1 K=     (3.2) 
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where 1
~n  and *n  denote numbers of observations in the designs 1

~
d  and ∗d , 

respectively. 
Let =1N twd

1N ⊗∗  be the bv×  incidence matrix of the considered SSP 

design with parameters: twssv )( 21 += , ∗= bb ,  twkk ∗= ,  tw1rr ⊗= ∗ ,  

twbkn ∗= , where ∗d
N  is given in (3.1). This incidence matrix 1N  with respect 

to blocks plays an important role in constructing the new SSP design. The 
applied construction leads to proper (cf. Caliński and Kageyama 2000, 
Definition 2.2.2) and non-equireplicated experiment SSP design (cf. Caliński 
and Kageyama 2000, Definition 2.2.3).  

As mentioned by AmbroŜy and Mejza (2011), statistical properties of the 
SSP designs are related mainly to algebraic properties of  stratum information 
matrices fA , f = 0, 1, …, 4. In the present case, forms of these matrices are 

given in (3.3). 

Assuming that  )...,,
2

,
1

()(
s

rrrdiag=δ∗r ,  where ∗r  is in (3.2), we have 

twtwbk
JrrA ⊗′= ∗∗ )(

*

1
0 , 

twtwdd* twbktwk
JrrJNNA ⊗′−⊗′= ∗∗ )(

*

1

*

1
*1 , 

twdd*tw twktw
JNNJrA ⊗′−⊗= δ

**

1
*)(

1
2 ,   (3.3) 

twwt tww
JrJIrA ⊗−⊗⊗= δδ *)(

1
*)(

1
3 , 

wttw w
JIrJrA ⊗⊗−⊗= δδ *)(

1
*)(4 . 

One can check that resulting SSP design is generally balanced. It follows 

from the fact the matrices (3.3) commute with respect to twIrr ⊗= δ−∗δ− )(  

(e.g. Mejza, 1992, AmbroŜy and Mejza, 2011), where 

)/1...,,/1()( 1 srrdiag=δ−∗r . This means that these matrices have a common 

set of eigenvectors corresponding to some eigenvalues with respect to δr . It 
allows to define a common set of contrasts and corresponding to them stratum 
efficiency factors (cf. Mejza, 1997a, 1997b).  
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Table 1.  Stratum efficiency factors of the considered non-orthogonal SSP design 

Strata Types of 
contrasts 

df 
1 2 3 4 

TA  11

*

*
1

−=

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
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ρ

ρ
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∗

∗
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1 1
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∗

∗

ε

ε

m

L

1

   

CA  12 −s   1*
0 =ε    

CT AvsA .  1  1*
0 =ε    

B 1−t    1  

C 1−w     1 

B × C  )1)(1( −− wt     1 
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)1(

1

*

*
1
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m
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1−w     1*
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TA × B × C  =

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
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1
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L )1)(1)(1( 1 −−− wts    1*
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CA × B × C  )1)(1)(1( 2 −−− wts     1*
0 =ε

( CT AvsA . ) 

× B × C  
)1)(1( −− wt     1*

0 =ε  

df (degrees of freedom) – numbers of the particular types of the contrasts estimable in the strata; 
1– the inter-block stratum, 2 – the inter-whole plot stratum, 3 – the inter-subplot stratum, 4 – the 
inter-sub-subplot stratum 
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In the present paper, we consider the following types of the contrasts: 
among main effects of the whole plot treatments including: test A treatments 
( TA ) and additional (control) A treatments (CA ), between the test group and 
the control group of A treatments (TA vs. CA ), then among main effects of the 
subplot (B) treatments, among main effects of the sub-subplot (C) treatments, 
and other interaction contrasts as in table 1. Analyzing algebraic properties of 
the matrices (3.3) we obtain information about estimability of the contrasts in 
the strata and their stratum efficiency factors fhε , 4,...,1,0=f ; 

vh ,...,2,1= ; vh < . In the table 1, they are expressed by the eigenvalues ∗ε j , 

mj ,,1,0 K= , given in (3.2), according to the construction method. 

4. Some remarks and example 

From Table 1, it follows that we lose less information in the incomplete 
SSP design with respect to the whole plot (A) treatments than in other cases (e.g. 
AmbroŜy and Mejza, 2011).  

We can notice that only basic contrasts among main effects of the test A 
treatments ( TA ) are estimated with partial efficiency in two different strata: in 
the inter-block stratum and the inter-whole plot stratum (m classes of 
efficiency). All other contrasts are estimated with full efficiency (= 1). It means 
that information about these contrasts is contained in only one, corresponding to 
the type of a contrast, stratum. It follows from the construction method (the 
subplot treatments and the sub-subplot treatments are in RCB subdesigns), from 
the nature of the SSP design (a nested system of units) and from statistical 
properties of the generating design (an orthogonal supplementation). 

To reduce the number of m efficiency classes of the subdesign 1

~
d  (and thus 

the generated SSP design) we chose the PEB design with m – efficiency classes 
from the class of the PBIB designs (e.g. Clatworthy (1973)). We assumed that 

1s  test A treatments can be divided into 1l  groups with 2l  different test A 

treatments, so 211 lls = . Let the test A treatments occur in a regular group 
divisible partially incomplete block design with two efficiency classes                  

(R-GDPBIB(2) design) denoted by 1
~
d  ( 211 lls = , 1b , 1

~
k , 

11

~
ss r 1r = , 1λ , 2λ ), 

where 1b , 1

~
k  are defined in the third chapter of the present paper while r~ , 1λ , 

2λ  mean a number of replicates of the test A treatments and numbers of 
meetings in blocks of pairs of these treatments belonging to the same group or 
different groups, respectively. The statistical properties of the designs 
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considered are described in terms of eigenvalues 1

~~kr=µ0  with multiplicity 1, 

1
~ λ−=µ r1  with )1( 21 −=ρ ll1  and 211

~~ λ−=µ skr2  with 11 −=ρ l2  of the 

association matrix '
11

~~
NN  of the GDPBIB(2) design, where 1

~
N  is defined in 

Chapter 3 and 1

2

0

s
j

j =ρ∑
=

. Let '
1111

~~~~~
NNIC kr −=  be C-information matrix for 

the test A treatments and 1

~~/ krjj µε -1= , denote eigenvalues of this matrix with 

respect to Ir~  with multiplicities jρ , j = 0, 1, 2, where 
1

2

0

s
j

j =ρ∑
=

. Let us note 

that no contrast is connected with the eigenvalue 00 =ε , so we will omit it in 

further considerations. Using above considerations we can write eigenvalues 
(3.2) of an C-information matrix for all A treatments as follows: 

  1*
0 =ε , 2

*
0 s=ρ ,  

1

1 ~~)/~(1
kr

nn jµ
−= ∗∗

jε ,  jj ρ=ρ* ,  j = 1, 2.  (4.1) 

It is convenient to introduce an abbreviation to describe the property of 
balance of the considered SSP design. Let },{ αqM f  denote the property that 

q  contrasts between main effects of factor M (or interaction contrasts) are 

estimated in the f -th stratum with efficiency factor α . In other words, we say 

that design is },{ αqfM -balanced. In particular, if 1=α  that design is 

}1,{qfM -orthogonal. 

In the example we can say the considered non-orthogonal SSP design with 
the number of the treatment combinations stwv = , where 21 sss += , 
generated by R-GDPBIB(2) design with the number of the test A treatments 

211 lls =  is:  

}({ 1211
∗ε− -11),llA -balanced, }{ 211

∗ε− -11,lA -balanced,  

}({ 1212
∗ε−1),llA -balanced, }{ 212

∗ε−1,lA -balanced,  

where ∗ε1  and ∗ε2  are given in (4.1) and with respect to other contrasts the 
considered SSP design is always: 

}{3 11,−tB -orthogonal,  

}{()( 11),1)(-3 −× tsBA -orthogonal,  

)( 11,4 −wC -orthogonal,  
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}{()( 11),1)(4 −−× wsCA -orthogonal,  

}{()( 11),1)(4 −−× wtCB -orthogonal, and  

1}1),1)(-1)(4 −−×× wtsCBA {()( -orthogonal (cf. Table 1). 
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