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Summary

In this paper, the properties of the regular D-optimal chemical balance weighing design are
considered. We consider this design under assumption that the measurements errors are equally
negative correlated they have the same variances. Here we study the issues regard to the existence
conditions of regular D-optimal design. We present the relations between the parameters of such
design and construction methods.
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1. Introduction

Here, we study a linear model

y=XwW+e
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(-1,0,1), the class of
nxp (n>p) matrices X:(Xij), i=12..n, j=12,..,p, of known

where y isan nx1 vector of observed weights, X e @,

elements equal to —1, 1 0or 0, w isa px1 vector of unknown measurements of
objects and e isan nx1 vector of random errors. In such model n is the number
of measurements and p is number of objects. We assume that E(e): 0, and

Cov(e)=c°G, where 0,, is vector of zeros, o >0 is known parameter, G is
the nx n symmetric positive definite matrix of known elements given in the form

GZQ[(l—P)anrPlnl'nL g>0, n_—11<p<0, (1.1)

where g, p are known, |, denotes identity matrix of rank n and 1, denotes
nx1 vector of ones.

The inverse of matrix G is given as

e-1=(g<1—p)>{nn L)mn]

“1+p(n-1

For the estimation of unknown measurements of objects w we use the
normal  equations XG 'XWw=XG™'y. We said, that the design

Xed,,,

nonsingular, i.e. if and only if X is of full column rank. Assuming that X G X
is nonsingular, the generalized least squares estimator of w is given by

W=(XG'X]"'XGly and Var(W)=c*(XG'X]". The matrix

M =X G™1X is called the information matrix of the design X. Since the
purpose of weighing designs is to estimate each of the individual unknown
measurements (weights) of objects with whether accuracy it is reasonable to
expect the design to give minimal general variance for all estimated weights. So,
D-optimality criterion is considered. The optimality problem is concerned with
efficient estimation in the sense of D-optimality by a proper choice of the design
matrix X among many at our disposal. As to the notation of D-optimality, the

idea is to minimize the determinant of M~ for each form of G . Different forms
of the matrix G have been considered in the literature. For details, we

recommend Jacroux et al. (1983), Masaro and Wong (2008), Katulska and Smaga
(2013). Some applications of such designs are given in Banerjee (1975). The

(—1,0,1) is nonsingular if and only if the matrix XG*X is
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relations between chemical balance weighing designs and the factorial designs
are given by Cheng et al. (2004). The practical applications of such designs in the
agriculture, medicine as well as in industy are presented in Bose and Bagchi
(2007), Jacroux (2009).

In present paper, we present new results related to the D-optimal chemical
balance weighing designs assuming that the random errors are equally negative
correlated and with the same variances. We give new construction method of D-
optimal design. It is based on the incidence matrices of the balanced bipartite
weighing designs and the ternary balanced block designs. We give the lower
bound for the determinant of the inverse of the information matrix and the list of
the parameters of D-optimal experimental plans.

2. D-optimal design

Let us consider X:[xl,xz,...,xp] e®,,(-101). Our goal is to

determine matrix X, for that the lower bound of det(X'G’lx)fl is minimal
among matrices in the class d)nxp(—l,O,l). Based on the results given in Rao
1973: Section 1c.1 (ii) (b) we get

Lemma 2.1. For diagonal elements of the inverse of information matrix, the

“1+p(n-1)

Next, we prove the inequality which gives the lower bound for determinant Mt

) ' -1
: _ . x:11 X
inequality M ;' = (XJ.G’lxj)l > g(l—p)[xjxj M] holds.

From Ceranka and Graczyk (2016) we have

Theorem 2.1. If X e @, (~1,0,1) and G is given in 1.1 then

nxp

p

4 ~ _ p(m-2u)’ B
detM™ >| g(1 p)[m —1+p(n_1)j , 2.1)
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where m = max{ml, m,,...., mp}, m; represents the number of elements equal to

~landlin j™columnof X, u= min{ul,uz,...,up} , U; represents the number
of elements equal to —1 in j™ columnof X, j=12,..,p.

(-1,0,1) with

the variance matrix of errors oG , where G is given in 1.1, is said to be regular
D-optimal if it satisfies the equality in 2.1, that is

Definition 2.1. Any chemical balance weighing design X € ®

nxp

detM™ = g(1—p)[m-i(+rlz—nzfml p

Theorem 2.2. Any chemical balance weighing design X € @, (~1,0,1) with

nxp

the variance matrix of errors o-2G , Where G is givenin 1.1 is regular D-optimal
if and only if

p(m —2u)’

s ey (1,-1,1,)  and

(i) XX=ml -

(i) X1,=z,,

where zZ, is px1 vector, for which the jth element is equal to m—2u or
—(m-2u), j=12,...,p.

3. Construction of regular D-optimal designs

Inanyclass @, , {—1, 0, 1} we are not able to determine regular D-optimal

design, for example based on the methods given in Ceranka and Graczyk (2014
a, b, ¢, 2015). So, the basic idea of this paper is to determine regular D-optimal
design in the classes in that it is impossible yet. The construction presented here
is based on the incidence matrices of the balanced bipartite weighing designs and
the ternary balanced block designs. Here, we broaden the list of classes

d)nxp(—l,o,l) in that regular D-optimal chemical balance weighing design
exists. Thus, we recall the definition of the balanced bipartite weighing design
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given in Huang (1976) and of the ternary balanced block design given by
Billington (1984).

The balanced bipartite weighing design with the parameters
v, b, r, Kk, K,, A, &, there is the design which describes how to replace v

treatments in b blocks such that each block containing k distinct treatments is
divided into 2 subblocks containing k;, and k, treatments, respectively, where

k =k, + K, . Each treatment appears in r blocks. Every pair of treatments from
different subblocks appears together in A, blocks and every pair of treatments
from the same subblock appears together in A, blocks. The parameters are

related by the following identities vr =b(k, +k,), b=0.50v(v-1)kk, )",
r= 0-57“1(k1 +k, )(V _1)(k1k2 )—1’ A, = 0-5(7‘1(k1(k1 _1)+ k (kz _1)))(k1k2 )_1-
If k, #k,, then each object occurs in r, blocks in the first subblock and in r,
blocks in the second subblock, L+r=r and
r,=0.51,(v-1)k;*, r, =0.54,(v—-1)k;*. N is the incidence matrix of such
a design with the elements equal to O or 1 and

N*(N*)' = (I’ — A - >"2)|v + (>"1 + 7\‘2)1v1;/ .

Any ternary balanced block design with the parameters v, b, r, k, A, p,,
p, is a design that describe how to replace v treatments in b blocks, each of size
k insuch a way that each treatment appears 0, 1 or 2 times in r blocks. Each of
the distinct pairs of treatments appears A times. Each treatment occurs alone in
p, blocks and is repeated two times in p, blocks, where p, and p, are constant
for the design. It is straightforward to verify  that
vr =bk, r =p, +2p,, Mv-1)=p,(k 1)+ 2p,(k —2). N is the incidence
matrix of such design with elements equal to 0, 1 or 2 and
NN =(p, +4p, — 1)1, +11,1,.

Now, we form the design matrix X € ®,,,(~1,0,1) of the chemical balance

weighing design as

nxp

N,
X=| . , (3.1)
Nz _lbzlv
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where N, is constructed from N; - the incidence matrix of the balanced bipartite
weighing design with the parameters v, b, 1;, K;;, K,;, A,;, A, by replacing in
each column k;, elements equal +1 that correspond to the elements belonging to
the first subblock by -1 and N, is the incidence matrix of the ternary balanced
block design with the parameters v, b,, r,, K,, A,, py,, P,. FOr
Xe®, (-101)intheform3.1 n=b, +b, and p=v.

(-1,0,1) in the

form 3.1 with the variance matrix of errors °G , where G is given in 1.1, is
nonsingular if and only if k;, #k,, or k, #V.

Lemma 3.1. Any chemical balance weighing design X € ®

nxp

The optimality conditions indicated in Theorem 2.2 implies that the
construction methods of the regular D-optimal design Xe(I)nXp(—l,O,l) are

depended on the parameter p. Thus, we can formulate the following Theorem.

Theorem 3.1. Any nonsingular chemical balance weighing design

Xed,,, (-1,0,1) given by 3.1 with the variance matrix of errors °G , where
G is of the form 1.1, is regular D-optimal if and only if
(i) A, —Ay+b,+A,-2r,<0 and
(i) p= Ay —Ay +b, +A, —2r,
(rl - 2r11 +h _bz)z _(bl + bz _1)(7‘21 _}“11 + bz + 7‘2 - 2I’2)

where 1, =0.51,, (v -1)k,;.
Proof. If Xe®,,(=1,0,1) then XX = (1, —hpy + Ay, +1,+2p, —4,) 1, +

+(hy =Ny, +b, + 4, —2r,)1,1,. Hence, from Theorem 2 it follows that
chemical balance weighing design is regular D-optimal if and only if conditions
(i) and (ii) are simultaneously fulfilled. The condition X1 = z,, implies that

c; X1, =m-2u or —(m-2u), j=12,..,p, where

m-2u=r-2r,+r,—b,, C; is jth column of the matrix I,. From

i p

2 2
XX =ml —M(l ~1,1") we obtain o xxe = PM=2u) o,
* T Lrpn_) e el KX = )
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consequently ¢ X'XC, =Ap —Ay +b, +4,-2r,,  j#]j. Moreover,

p(rl —2r,+n—b, )2
1+p(b, +b, -1)
Under (i), the denominator (ii) is greater than zero, hence p<0, ie.

~(n-1)"<p<o0.

Subsequently, we give the theorems presenting the parameters of the
balanced bipartite weighing designs and the ternary balanced block designs.
Based on these parameters we form the incidence matrices and next, the design
matrices of the regular D-optimal chemical balance weighing design

Xe®, (-101).

and the condition (ii) is true.

Aoy —Ayy +b, +A, =21, =

Theorem 3.2. If for a given p, the parameters of the ternary balanced block design
areequaltov=k, =2s+1,b,=r,=2s+u, A, =2s+u-1, p, =U, p,, =S
and the balanced bipartite weighing design are equal to

(i) p:—2(552+65+2u—2)‘1 and v=2s+1, b =s(2s+1), r, =3s,
kllzl’k21=2!;\411=2;221:1,S=2,4,7,

(i) p=—(4s?+3s+u—1)"and v=2s+1, b =s(2s+1), , =65, k;, =2,
Ky=4, Ay =8, A,y =7, S=457,

(iii) p=—3(10s? +95+3u—3)" and v=2s+1, b, =s(2s+1), r,=8s,
k,=3,K,, =5, A, =15, 4,, =13, s=4,5,7,

U =1.2,..., then the chemical balance weighing design X e @ ,(~1,0,1) given

by 3.1 with the variance matrix of errors o°G, where G isas 1.1, is regular D-

optimal.

Proof. It follows immediately that that the parameters given above satisfy the
conditions (i) and (ii) of Theorem 3.1.

Theorem 3.3. If for a given p, the parameters of the ternary balanced block
design are equal to v=Kk, =2s+1, b,=r,=4s+u+1, A, =4s+u-1,
p, =u+1l, p,, =2s and the parameters of the balanced bipartite weighing
design are equal to
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(i) p:—3(752+155+3U)_1 and v=2s+1, b, =s(2s+1), r, =3s, k;, =1,
Ky =2, Ay =2, Ay =1,5=23,..

(ii)p:—3(1052+15s+3u)_1 and v=2s+1, b =s(2s+1), r, =6s,
Ky=2, Ky=4, Ay =8, Ay =7, 5=34,.,

-1

(iii) p :—(352 +55+u) and v=2s+1, b =s(2s+1), r, =8s, k, =3,
K, =5, Ay =15, A,, =13, s=4,5,...,

U =1.2,..., then the chemical balance weighing design X e ® ,(~1,0,1) given

by 3.1 with the variance matrix of errors o°G, where G isas 1.1, is regular D-

optimal.

Proof. It is a simple matter to check that the parameters given above satisfy the
conditions given in Theorem 3.1.

Theorem 3.4. If for a given p, the parameters of the ternary balanced block

design are equal to v=2s+1, b,=u(2s+1), r,=u(@s-t+1),

k,=2s—t+1, A, =u(2s-2t+1), p,, = u(Zs—t2 +1), P,y = 0.5ut(t —1)

and the parameters of the balanced bipartite weighing design are equal to

(i) p:—(352+u2t2+s—25ut+2us+u—1)_l and v=2s5+1,
b =s(2s+1), ,=3s, k=1, kyy =2, A, =2, Ay, =1,

(ii) p=—(652+u2t2+s—4sut+2us+u—1)_1 and v=2s+1,

b,=s(2s+1), r,=6s, k;; =2, kyy =4, 4, =8, Ay =7,

(iii) p:—2(852+u2t2+25—4sut+4us+2u—2)_1 and v=25+1,
b, =s(2s+1), r, =8s, k, =3, k,, =5, A,, =15, A,, =13,
t=2 and s=23,..
where u =1,2,..., for the cases (i) and (ii) 1t =3 and s=5,6,..., for the case
t=4 and s=8,9,..
(i) t=2,3,4, s=2t,2t +1,..., then the chemical balance weighing design
Xed,,, (-1,0,1) given by 3.1 with the variance matrix of errors °G , where
G isas 1.1, is regular D-optimal.
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Proof. In is evident, the parameters given above satisfy the conditions (i) and (ii)
presented in Theorem 3.1.

Theorem 3.5. Let v=4s+1. If for a given p, the parameters of the balanced
bipartite weighing design and the ternary balanced block design are equal

() p=-3(3s*+27s+3u)" and b, =s(4s+1), r, =55, ky, =2, k,, =3,
A;=3, Ay=2and b,=r,=85+u+1, k, =4s+1, 4, =8s+u—1,
pp,=U+1, p,,=4s,u=12,..,s=23,...,

(i) p= —(532 +U%? +s—2sut +4us+u —1)7l and b, =s(4s+1), r,=5s,
K, =2, Ky =3, A, =3, Ay =2 and b, =u(4s+1), r, =u(4s -t +1),
k,=4s—t+1, ), =u(4s — 2t +1), p1, = U(ds —t2 +1),
P, =05ut(t-1), t =2,3,4, s=t,t+1,..,

U =1.2,..., then the chemical balance weighing design X e @ ,(~1,0,1) given

by 3.1 with the variance matrix of errors o°G, where G isas 1.1, is regular D-

optimal.

Proof. Obviously, the parameters given in (i)-(ii) satisfy two conditions given in
Theorem 3.1.

Theorem 3.6. If for a given p, the parameters of the balanced bipartite weighing
design are equal to v=2s, b =s(2s-1), r, =3(2s-1), k, =2, k,, =4,
Ay =8, A, =7 and the parameters of the ternary balanced block design are
equal to

(i) p:—3(1032+55+3u—8)_1 and v=k,=2s, b,=r,=4s+u-2,
A, =4s+Uu—-4, p,=U, p,, =25-1,5=34,...,

(ii) p=—(632+u2t2—53+25ut—2ut+2us)_1 and v=2s, b,=2us,
=u@s-t), k,=2s—t, A,=2u(s—t), p,=ul2s—t?),
t=2 and s=34,..
P, =05ut(t—1), it=3 and s=56,.. ,
t=4 and s=910,..
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(-1,0,1) given

by 3.1 with the variance matrix of errors o°G, where G isas 1.1, is regular D-
optimal.

u=12,..., then the chemical balance weighing design X e D0

Proof. Clearly, the parameters given above satisfy the conditions (i) and (ii) of
Theorem 3.1.

Theorem 3.7. If for a given p, the parameters of the balanced bipartite weighing
design are equal to v=6s, b, =6s(6s—1), r, =3(6s 1), k, =1, k,, =2,
A =4, A, =2 and the parameters of the ternary balanced block design are
equal to

() p=-4(180s>+125+4u—11)" and v =k, =65, b, =1, =125+ U2,
A, =12s+u-4, p,=u, p,, =6s-1, s=12,...,

(ii) p:—2(10852+u2t2—18s—125ut+2ut+12us—1)_1 and v =6s,
b, =6us, r, =u(6s—t), k, =6s—t, A, =2u(3s —t), p,, :u(65—t2),
pp=U,t=234,s=t-1t t+1..,

U =1.2,..., then the chemical balance weighing design X e @ ,(~1,0,1) given

by 3.1 with the variance matrix of errors o°G, where G isas 1.1, is regular D-
optimal.

Proof. It is easily seen that that the parameters given above satisfy the conditions
(i) and (ii) of Theorem 3.1.

Theorem 3.8. If for a given p, the parameters of the balanced bipartite weighing
design and the ternary balanced block design are equal to

() p=-2(s>+8s+9)" and v=5, b =10, =6, k, =1, ky=
Ay=2, Ay=1 and v=5, b,=5(s+1), r,=4(
h,=35s+2, p,=4s, p,=2,5=12,...,

=

w
+
[EE
~—
=
N
Il
AN

(i) p=—(s—55+63]" and v=9, b =36, =32, k=3, kj =5
Ay =15, A,y =13 andv=9, b, =3(s+4), r,=2(s+4), k,=6,
A, =S+5,p,=8,p,,=5,5=12,...,
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(i) p=—(s+27)" and v=9, b, =18, r, =10, k;, =2, ky; =3, A, =3,
Ao,y =2 and v= k2=9, b2=r2=5+8; hy=S+T7, p, =5, pp=4,
s=12,...,

(IV) p=—]7/101 and v=11, b, =55, r1:40, k11:3’ k21:5’ 7\'11:15’
;\,21213 and V= kzzll, b2=r2=7,7M2=4’,012:5’p22=1’

(V) p:—3/568 and V=12, b1:132, r1=33, kll:]" k21:2’ 111:4!
Ay =2 and v=12, b, =18, r, =15, k, =10, 4, =11, p, =1,
Pr =17,

(vi) p=-05(2s>~9s+91]" and v=12, b =132, =33, ky=1,
Kyy=2, Ayy =4, Ay, =2 and v=12, b, =3(2s+5), r, =2(2s+5),
k,=8,%,=2(s+3), p, =6-2s, p,, =35+2, s=0,1,2,

Aoy =7 and v=12, b, =18, r, =15, k, =10, A, =11, p, =1,
Py =1,

Kyy=5, Ay, =15, 1,y =13 and v=15, b, =3(s+4), r, =2(s+4),
k, =10, A, =s+5, p,, =6-2s, p,, =25+1, s=12,

then the chemical balance weighing design X € @, (~1,0,1) given by 3.1 with

the variance matrix of errors °G, where G isas 1.1, is regular D-optimal.

Proof. It is easy to check that the parameters given above satisfy the conditions
indicated in Theorem 3.1.

4, Discussion

Some constructions of the regular D-optimal chemical balance weighing
designs with negative correlated errors based on the set of the incidence matrices
of the balanced bipartite weighing designs were presented in Ceranka and

Graczyk (2014c). Let us consider the class (I)ZOXS(—l,O,l). Here, the regular D-
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optimal chemical balance weighing design was determined for p = —%5 (Th.
2.3(xii), s=2,t=1), p= —%3 (Th. 2.3(xiii), s=2, t=1). The regular D-
optimal chemical balance weighing design was determined for p:—%o

(Th.6(i), s=u=1), p :—%7 (Th. 6(iit), s=t=1, u=1) in Ceranka and

Graczyk (2015). Evidently, it is not possible to determine regular D-optimal
chemical balance weighing design in any class @nxp(—1,0,1) and for any value

p. Hence, in this paper we give the matrix of regular D-optimal in class
®,5(-1,0,1) design for p=—1), (Th.4(i), s=2, u=6), p=-3;, (Th
5(), s=2, u=1), pz—%g (Th. 6(ii), s=t=u=2), p= —%3 (Th. 6ii),
s=u=2,t=3), p=—%8 (Th. 10(i), s=1). Similarly, for the class
(I)72X9(—l,0,1), the constructions for p=‘%69 (Th. 2.3(vi), s=4),
p:_%gg (Th. 2.3(x), s=4, t=1), p=_%15 (Th. 2.3(xii), s=4, t=1),

o= —%27 (Th. 2.3(xiii), s=4, t=1), p= —%71 (Th. 2.3(ix), s =4) were
presented in Ceranka and Graczyk (2014c). By contrast, in Ceranka and Graczyk
(2015) the constructions for the cases p = —%2 (Th. 6(1), s=2, u=37),

p:_%69 (Th. (i), s=2, t=1, u=6), p=‘%35 (Th. 11(iii), s=2,

u =40), p:_%gg (Th. 5, s=1, t=4, u=7), pz—%71 (Th. 11(ii),
u=14) were presented. The current study solves the existence problem in

mentioned class for the cases p = _%9 (Th.4(i), s=4,u=28), p= _%03
(Th. 4(ii), s=4, u=28), p:_%zg (Th. 5(), s =4, u=19), PZ_%W
(Th. 5(ii), s=4, u=19), p=_%7 (Th. 5(iii), s=4, u=19), P=_%17

(Th. 7(), s=2, u=237), pz_%n (Th. 7(ii), s=t=2, u=6), pz_%s
(Th. 10(iii), s = 46).

In the present paper, under fixed assumptions, we gave the solution of the
problem how to determine the regular D-optimal chemical balance weighing
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design in the classes in that we are not able to indicate optimal design by using of
the methods know in the literature.

5. Example

Let us consider the experiment in that we determine unknown measurements
of p =5 objects by used of n =20 measurements assuming that the correlation

between measurement errors equals p:_%l. We construct the matrix

X € ®,,.(-1,0,1) according to the Theorem 5(i). Let N; be the incidence
matrix of the balanced bipartite weighing design with the parameters v=5,
b,=10,r=6,k; =1,k,; =2, A, =2, A, =1andlet N, betheincidence
matrix of the ternary balanced block designs with the parameters v =k, =5,
b, =r,=10, A, =8, p;, =2, p,, =4 given in the forms

1, 1, 1, 1, 0 4, 0 0 1, O
, 0 0 14, 1, 1, 1, 4, 0 O

N;=[4, 1, 0 0 1, 0 0 1, 1, 1|,
014, 1, 0 1, 4, 1, 0 1,
0 014 1, 1, 01, 0 1, 1,]
1 2002120 0 2]
2120021200

N,={0 2 1200212 0|,
0021200212
2 002120021

where 1. denotes the element belonging to the ¢™ subblock, respectively,
¢=12.

According to the formula 3.1 we form the matrix X € @, (~1,0,1) of the
regular D-optimal chemical balance weighing design as
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| |
P O R, B P P OO R OO Rk O R R, R, B,
|
|
| |
| |

[
[
[
[ |
O P O rPrPFPPFPOEF PP OOGPF P Oo
| [

R P PO PRk PP RO PRk OO R R PR R P OO
|

O P PP O EF PP PP P OOP OO P

SO P P P FPOEFRFrFRPRPRPRPRPPOPRPROLPRERLPEPPEP OO

| |
R
|
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